Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's EUNIS Mission: Six Minutes in the Life of the Sun

12.12.2012
In December, a NASA mission to study the sun will make its third launch into space for a six-minute flight to gather information about the way material roils through the sun's atmosphere, sometimes causing eruptions and ejections that travel as far as Earth.

The launch of the EUNIS mission, short for Extreme Ultraviolet Normal Incidence Spectrograph, is scheduled for Dec. 15, 2012, from White Sands, N.M. aboard a Black Brant IX rocket. During its journey, EUNIS will gather a new snapshot of data every 1.2 seconds to track the way material of different temperatures flows through this complex atmosphere, known as the corona.

A full study of the sun's atmosphere requires watching it from space, where one can see the ultraviolet, or UV, rays that simply don't penetrate Earth's atmosphere. Such observations can be done in one of two ways – send up a long-term satellite to keep a constant eye on the sun, or launch a less expensive rocket, known as a sounding rocket, for a six minute trip above Earth's atmosphere to collect data fast and furiously throughout its short trip up to an altitude of 200 miles and back.

"Six minutes doesn't sound like much," says solar scientist Douglas Rabin who is the principal investigator for EUNIS at NASA's Goddard Space Flight Center in Greenbelt, Md. "But with an exposure every 1.2 seconds, we get very good time resolution and a lot of data. So we can observe minute details of how dynamic events on the sun happen over times of two to three minutes."

Watching the sun at this kind of time cadence helps scientists understand the complex movements of solar material – a heated, charged gas known as plasma – as it heats and cools, rising, sinking and gliding around with every change in temperature. Adding to the complexity of the flows are magnetic fields traveling along with the plasma that also guide the material's movements.

This writhing atmosphere around the sun powers an array of solar events, many of which stream out into the farthest reaches of the solar system, sometimes disrupting Earth-based technologies along the way.

"Ultimately all of our research is geared toward addressing key outstanding questions in solar physics including how the sun's outer atmosphere, or corona, is heated, what drives the solar wind, and how energy is stored and released to cause eruptions," says Jeff Brosius, a solar scientist at the Catholic University of America and a EUNIS co-investigator based at Goddard.

But teasing out how this energy moves through the corona is not a simple process. Different types of observations and techniques must be combined to truly track how different temperature material courses around.

The technique that EUNIS uses to observe the sun is known as spectroscopy. Taking pictures of the sun is one very useful form of observation, but it requires looking at just one wavelength of light at a time. A spectrometer on the other hand does not provide imagery, in a conventional way, but gathers information about how much of any given wavelength of light is present, showing spectral "lines" at wavelengths where the sun emits relatively more radiation. Since each spectral line corresponds to a given temperature of material, this provides information about how much plasma of a given temperature is present. Capturing many spectra during the flight will show how the plasma heats and cools over time. Each wavelength also corresponds to a particular element, such as helium or iron, so spectroscopy also provides information about how much of each element is present. Each spectrographic snapshot from EUNIS is based on light from a long, narrow sliver running across about third of the visible sun -- nearly 220,000 miles long.

"Looking at a small slice of the sun at such fast time cadence means we can look at the evolution and flows on the sun in a very direct way," says solar scientist Adrian Daw, the instrument scientist for EUNIS at Goddard.

Repeated sounding rocket flights offer significant advantages compared to orbital missions in terms of the measurement flexibility. Each separate flight can focus on the specific measurements that are most valuable, adjusting, as necessary, making improvements and emphasizing different aspects of the sun. Improving time cadence, for example, may be necessary to study the dynamics, however this inherently limits the observational resolution as the instrument gathers less light for any given snapshot of data. This flexibility in emphasis for each flight greatly enhances the scientific return.

This launch is the third for the EUNIS mission, but the tenth in a line of similar rockets where the predecessor was named SERTS for Solar Extreme-ultraviolet Research Telescope and Spectrograph. On each flight the scientists turned their attention to focusing on a different aspect of their research. During this flight, the instrument will observe a band of extreme ultraviolet light with wavelengths from 525 to 630 Angstroms with better sensitivity and greater spectral resolution than any previous instrument. This set of wavelengths covers a wide range of temperatures, representing solar plasma at 45,000 to 18 million degrees Fahrenheit (25,000 to 10 million Kelvin) which includes the temperature ranges of material from near the sun's surface to the much hotter corona above. Since we do not yet understand why the corona gets hotter the farther it is from the sun – unlike, for example, a fire where the air gets cooler farther away – studying such a wide range is crucial part for understanding that process.

With a six-minute window, EUNIS is unlikely to see a specific large eruption on the sun such as a solar flare or coronal mass ejection (CME) but since the sun is currently moving into the height of its 11-year cycle, they do expect to see a fairly active sun.

"The last two times EUNIS flew were in 2006 and 2007," says Daw. "Now the sun is waking up, getting more active and we're going to see a whole different type of activity."

Karen C. Fox
NASA's Goddard Space Flight Center

Karen C. Fox | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/sounding-rockets/news/eunis.html

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>