Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanostructures to facilitate the process to eliminate organic contaminants in water

13.05.2014

In her PhD thesis, Silvia Larumbe-Abuin has developed nanostructures that assist in the process to decontaminate water.


Dissolution process of organic particles through nanoparticles

Nafarroako Unibertsitate Publikoa.

The nanostructures (particles of a microscopic size of between 1 and 100 nanometres) are coated in titanium oxide to which nitrogen has been added. This allows sunlight, rather than ultraviolet radiation, to trigger the process involving the chemical reaction and destruction of contaminants.

What is more, thanks to the magnetic nucleus of the particles, once the process has been carried out, they can be retrieved and reused. Silvia Larumbe’s thesis is entitled: “Síntesis, caracterización y aplicaciones de nanoestructuras basadas en óxidos de metales de transición” [Synthesis, characterisation and applications of nanostructures based on transition metal oxides].

The basis of the research conducted is the phenomenon known as photocatalysis: when light affects a substance that acts as a catalyst, the speed of the chemical reaction is increased. In this case, the light activates the titanium oxide and different oxidizing radicals are formed; the latter destroy the organic contaminants in the water, which could be colouring agents, solvents, detergents, etc.

As the author of the work explained, "it is a sustainable system that could be used as an alternative to different treatments used traditionally in waste water treatment and, specifically, to eliminate certain organic contaminants".

One of the advantages of this development is the possibility of using sunlight instead of ultraviolet light. “Since nitrogen is added to the coating of the particles, the mechanism that will trigger the process can be sunlight rather than ultraviolet radiation, which means a more accessible, less expensive alternative that poses fewer risks.”

The fact that structures of a nanometric size are used also improves photocatalytic capability since the surface of the photocatalyst is greater. Another advantage is the reuse of the catalysing component; since the nanostructures are formed using a magnetic nucleus, they can be retrieved by applying an external magnetic field.

Notes

Silvia Larumbe graduated in Chemistry at the University of Navarre, did a Master’s in Chemical Science and Technology at the UNED (Open University) and obtained her PhD in the Department of Physics of the NUP/UPNA. She has participated in over twenty or so national and international conferences, is the co-author of twelve research papers, and has participated in various research projects.

Internet reference
www.unavarra.es/actualidad/berriak?contentId=181084
References
C. Gómez-Polo, S. Larumbe, J.M. Pastor. (2013). "Room temperature ferromagnetism in non magnetic doped TiO2 nanoparticles". Journal of Applied Physics 113 17B511

Oihane Lakar | Eurek Alert!
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=5044&hizk=I#.U3Jq_WGKDcs

Further reports about: Nanostructures Physics TiO2 destruction nanoparticles reaction temperature titanium transition

More articles from Physics and Astronomy:

nachricht Choreography of an electron pair
18.12.2014 | Max Planck Institute for Nuclear Physics, Heidelberg

nachricht 'Perfect Storm' Quenching Star Formation around a Supermassive Black Hole
18.12.2014 | National Radio Astronomy Observatory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

Smart Cities

08.12.2014 | Event News

European Polymer Congress 2015 in Dresden/Germany

01.12.2014 | Event News

Regional economic cooperation in Central Asia

21.11.2014 | Event News

 
Latest News

How Does Prostate Cancer Form?

19.12.2014 | Health and Medicine

Protection of the mouse gut by mucus depends on microbes

18.12.2014 | Life Sciences

How the Cell Keeps Misdelivered Proteins From Causing Damage in the Cell Nucleus

18.12.2014 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>