Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT rocket aims for cheaper nudges in space

25.02.2009
Plasma thruster is small, runs on inexpensive gases

Satellites orbiting the Earth must occasionally be nudged to stay on the correct path. MIT scientists are developing a new rocket that could make this and other spacecraft maneuvers much less costly, a consideration of growing importance as more private companies start working in space.

The new system, called the Mini-Helicon Plasma Thruster, is much smaller than other rockets of its kind and runs on gases that are much less expensive than conventional propellants. As a result, it could slash fuel consumption by 10 times that of conventional systems used for the same applications, said Oleg Batishchev, a principal research scientist in the Department of Aeronautics and Astronautics and leader of the work.

The propulsion systems currently used for maintaining a satellite's orbit, pushing a spacecraft from one orbit to another, and otherwise maneuvering in space rely on chemical reactions that occur within the fuel, releasing energy that ultimately propels the object.

Although such systems have brought humans to the moon and are regularly used in a variety of other applications, they have limitations. For example, chemical rockets are expensive largely due to the amount of fuel they use.

As a result, engineers have been developing alternative, non-chemical rockets. In these, an external source of electrical energy is used to accelerate the propellant that provides the thrust for moving a craft through space.

Such non-chemical rockets have been successfully used by NASA and the European Space Agency in missions including NASA's Deep Space 1, which involved the flyby of a comet and asteroid.

But the field is still relatively new, and these advanced rockets are one focus of the MIT Space Propulsion Laboratory (SPL). "The Mini-Helicon is one exciting example of the sorts of thrusters one can devise using external electrical energy instead of the locked-in chemical energy. Others we in the SPL work on include Hall thrusters and Electrospray thrusters. This area tends to attract students with a strong physics background, because it sits at the intersection of physics and engineering, with ample room for invention," said Manuel Martinez-Sanchez, director of the SPL and a professor in the Department of Aeronautics and Astronautics.

The Mini-Helicon is the first rocket to run on nitrogen, the most abundant gas in our atmosphere.

It was conceived through work with former astronaut Franklin Chang-Diaz ScD '77 on a much larger, more powerful system developed by Chang-Diaz. Batishchev's team did a theoretical analysis showing that the first of three parts of the larger rocket could potentially be used alone for different applications.

The idea "was that a rocket based on the first stage [of Chang-Diaz's system] could be small and simple, for more economical applications," said Batishchev, who noted that the team's prototype would fit in a large shoe box.

Since then, 12 MIT students have worked on the Mini-Helicon, resulting in one PhD and four masters' theses to date. Batishchev notes, however, that it could be years before the technology can be used commercially, in part due to certification policies through NASA and other agencies.

The Mini-Helicon has three general parts: a quartz tube wrapped by a coiled antenna, with magnets surrounding both. The gas of interest is pumped into the quartz tube, where radio frequency power transmitted to the gas from the antenna turns the gas into a plasma, or electrically charged gas.

The magnets not only help produce the plasma, but also confine, guide, and accelerate it through the system. "The plasma beam exhausted from the tube is what gives us the thrust to propel the rocket," Batishchev said.

He noted that the exhaust velocity from the new rocket is some 10 times higher than the velocity from the average chemical rocket, so much less propellant is needed.

Work continues. Batishchev notes that last summer, for fun, his team built a plasma rocket based on a glass bottle (a stand-in for the quartz tube) and an aluminum can (the radio-frequency antenna), both of which previously held soft drinks. It worked. "This shows that this is a robust, simple design. So in principal, an even simpler design could be developed," he said.

This work was funded by the Air Force Research Laboratory.

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Researchers release the brakes on the immune system

18.10.2017 | Health and Medicine

Separating methane and CO2 will become more efficient

18.10.2017 | Life Sciences

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>