Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New material synthesized: graphene nanoribbons inside of carbon nanotubes

14.09.2011
Physicists from Umeå University and Finland have found an efficient way to synthesize graphene nanoribbons directly inside of single-walled carbon nanotubes. The result was recently published in the scientific journal Nano Letters.

Graphene, a one atom thin flake of plain carbon, has a wide range of unusual and highly interesting properties. As a conductor of electricity it performs as well as copper. As a conductor of heat it outperforms all other known materials.


High resolution TEM images of graphene nanoribbons encapsulated in SWNTs, simulated structures of flat and helical nanoribbons inside of nanotubes and scheme of chemical reaction which results in formation of nanoribbons from coronene and perylene molecules.

There are possibilities to achieve strong variations of the graphene properties by making graphene in the form of belts with various widths, so called nanoribbons. These nanoribbons are now the real focus of attention in physics and an extremely promising material for electronics, solar cells and many other things. However, it is has not been easy to make such ribbons.

Associate professor Alexandr Talyzin and his research group at the Department of Physics, Umeå University, have together with colleagues from Professor Esko Kauppinen´s group, Aalto University in Finland, discovered a way to use the hollow space inside carbon nanotubes as a one-dimensional chemical reactor to make encapsulated graphene. An intriguing property of this space is that chemical reactions occur differently here compared to under bulk three-dimensional conditions.

– We used coronene and perylene, which are large organic molecules, as building blocks to produce long and narrow graphene nanoribbons inside the tubes. The idea of using these molecules as building blocks for graphene synthesis was based on our previous study, says Alexandr Talyzin.

This study revealed that coronene molecules can react with each other at certain conditions to form dimers, trimers and longer molecules in a bulk powder form. The result suggested that coronene molecules can possibly be used for synthesis of graphene but need to be somehow aligned in one plane for the required reaction. The inner space of single-walled carbon nanotubes seemed to be an ideal place to force molecules into the edge-to-edge geometry required for the polymerization reaction.

In the new study, the researchers show that this is possible. When the first samples were observed by electron microscopy by Ilya Anoshkin at Aalto University, exciting results were revealed: all nanotubes were filled inside with graphene nanoribbons.

– The success of the experiments also depended a lot on the choice of nanotubes. Nanotubes of suitable diameter and in high quality were provided by our co-authors from Aalto University, says Alexandr Talyzin.

Later the researchers found that the shape of encapsulated graphene nanoribbons can be modified by using different kinds of aromatic hydrocarbons. The properties of nanoribbons are very different depending on their shape and width. For example, nanoribbons can be either metallic or semiconducting depending on their width and type. Interestingly, carbon nanotubes can also be metallic, semiconducting (depending on their diameter) or insulating when chemically modified.

– This creates an enormous potential for a wide range of applications. We can prepare hybrids that combine graphene and nanotubes in all possible combinations in the future, says Alexandr Talyzin.

For example, metallic nanoribbons inside insulating nanotubes are very thin insulated wires. They might be used directly inside carbon nanotubes to produce light thus making nano-lamps. Semiconducting nanoribbons can possibly be used for transistors or solar cell applications and metallic-metallic combination is in fact a new kind of coaxial nano-cable, macroscopic cables of this kind are used e.g. for transmitting radio signals.

The new method of hybrid synthesis is very simple, easily scalable and allows obtaining almost 100 percent filling of tubes with nanoribbons. The theoretical simulations, performed by Arkady Krasheninnikov in Finland, also show that the graphene nanoribbons keep their unique properties inside the nanotubes while protected from the environment by encapsulation and aligned within bundles of single-walled nanotubes.

– The new material seems very promising, but we have a lot of inter-disciplinary work ahead of us in the field of physics and chemistry. To synthesize the material is just a beginning. Now we want to learn its electric, magnetic and chemical properties and how to use the hybrids for practical applications, says Alexandr Talyzin.

Original publication:Scientific journal: Nano Letters: Synthesis of graphene nanoribbons encapsulated in single-walled carbon nanotubes. DOI: 10.1021/nl2024678

Authors: A. V. Talyzin , I. V Anoshkin , A. G. Nasibulin , A. Krasheninnikov , R. M. Nieminen , H. Jiang , and E. Kauppinen.

For more information, please contac Dr. Alexandr Talyzin, Department of Physics, Umeå University, Phone: +49 (0)90-786 63 20, E-mail: alexandr.talyzin@physics.umu.se

Ingrid Söderbergh | idw
Further information:
http://www.vr.se
http://pubs.acs.org/doi/abs/10.1021/nl2024678?journalCode=nalefd

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>