Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New material synthesized: graphene nanoribbons inside of carbon nanotubes

14.09.2011
Physicists from Umeå University and Finland have found an efficient way to synthesize graphene nanoribbons directly inside of single-walled carbon nanotubes. The result was recently published in the scientific journal Nano Letters.

Graphene, a one atom thin flake of plain carbon, has a wide range of unusual and highly interesting properties. As a conductor of electricity it performs as well as copper. As a conductor of heat it outperforms all other known materials.


High resolution TEM images of graphene nanoribbons encapsulated in SWNTs, simulated structures of flat and helical nanoribbons inside of nanotubes and scheme of chemical reaction which results in formation of nanoribbons from coronene and perylene molecules.

There are possibilities to achieve strong variations of the graphene properties by making graphene in the form of belts with various widths, so called nanoribbons. These nanoribbons are now the real focus of attention in physics and an extremely promising material for electronics, solar cells and many other things. However, it is has not been easy to make such ribbons.

Associate professor Alexandr Talyzin and his research group at the Department of Physics, Umeå University, have together with colleagues from Professor Esko Kauppinen´s group, Aalto University in Finland, discovered a way to use the hollow space inside carbon nanotubes as a one-dimensional chemical reactor to make encapsulated graphene. An intriguing property of this space is that chemical reactions occur differently here compared to under bulk three-dimensional conditions.

– We used coronene and perylene, which are large organic molecules, as building blocks to produce long and narrow graphene nanoribbons inside the tubes. The idea of using these molecules as building blocks for graphene synthesis was based on our previous study, says Alexandr Talyzin.

This study revealed that coronene molecules can react with each other at certain conditions to form dimers, trimers and longer molecules in a bulk powder form. The result suggested that coronene molecules can possibly be used for synthesis of graphene but need to be somehow aligned in one plane for the required reaction. The inner space of single-walled carbon nanotubes seemed to be an ideal place to force molecules into the edge-to-edge geometry required for the polymerization reaction.

In the new study, the researchers show that this is possible. When the first samples were observed by electron microscopy by Ilya Anoshkin at Aalto University, exciting results were revealed: all nanotubes were filled inside with graphene nanoribbons.

– The success of the experiments also depended a lot on the choice of nanotubes. Nanotubes of suitable diameter and in high quality were provided by our co-authors from Aalto University, says Alexandr Talyzin.

Later the researchers found that the shape of encapsulated graphene nanoribbons can be modified by using different kinds of aromatic hydrocarbons. The properties of nanoribbons are very different depending on their shape and width. For example, nanoribbons can be either metallic or semiconducting depending on their width and type. Interestingly, carbon nanotubes can also be metallic, semiconducting (depending on their diameter) or insulating when chemically modified.

– This creates an enormous potential for a wide range of applications. We can prepare hybrids that combine graphene and nanotubes in all possible combinations in the future, says Alexandr Talyzin.

For example, metallic nanoribbons inside insulating nanotubes are very thin insulated wires. They might be used directly inside carbon nanotubes to produce light thus making nano-lamps. Semiconducting nanoribbons can possibly be used for transistors or solar cell applications and metallic-metallic combination is in fact a new kind of coaxial nano-cable, macroscopic cables of this kind are used e.g. for transmitting radio signals.

The new method of hybrid synthesis is very simple, easily scalable and allows obtaining almost 100 percent filling of tubes with nanoribbons. The theoretical simulations, performed by Arkady Krasheninnikov in Finland, also show that the graphene nanoribbons keep their unique properties inside the nanotubes while protected from the environment by encapsulation and aligned within bundles of single-walled nanotubes.

– The new material seems very promising, but we have a lot of inter-disciplinary work ahead of us in the field of physics and chemistry. To synthesize the material is just a beginning. Now we want to learn its electric, magnetic and chemical properties and how to use the hybrids for practical applications, says Alexandr Talyzin.

Original publication:Scientific journal: Nano Letters: Synthesis of graphene nanoribbons encapsulated in single-walled carbon nanotubes. DOI: 10.1021/nl2024678

Authors: A. V. Talyzin , I. V Anoshkin , A. G. Nasibulin , A. Krasheninnikov , R. M. Nieminen , H. Jiang , and E. Kauppinen.

For more information, please contac Dr. Alexandr Talyzin, Department of Physics, Umeå University, Phone: +49 (0)90-786 63 20, E-mail: alexandr.talyzin@physics.umu.se

Ingrid Söderbergh | idw
Further information:
http://www.vr.se
http://pubs.acs.org/doi/abs/10.1021/nl2024678?journalCode=nalefd

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>