Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel man-made material could facilitate wireless power

24.05.2011
Electrical engineers at Duke University have determined that unique man-made materials should theoretically make it possible to improve the power transfer to small devices, such as laptops or cell phones, or ultimately to larger ones, such as cars or elevators, without wires.

This advance is made possible by the recent ability to fabricate exotic composite materials known as metamaterials, which are not so much a single substance, but an entire man-made structure that can be engineered to exhibit properties not readily found in nature. In fact, the metamaterial used in earlier Duke studies, and which would likely be used in future wireless power transmission systems, resembles a miniature set of tan Venetian blinds.

Theoretically, this metamaterial can improve the efficiency of "recharging" devices without wires. As power passes from the transmitting device to the receiving device, most if not all of it scatters and dissipates unless the two devices are extremely close together. However, the metamaterial postulated by the Duke researchers, which would be situated between the energy source and the "recipient" device, greatly refocuses the energy transmitted and permits the energy to traverse the open space between with minimal loss of power.

"We currently have the ability to transmit small amounts of power over short distances, such as in radio frequency identification (RFID) devices," said Yaroslav Urzhumov, assistant research professor in electrical and computer engineering at Duke's Pratt School of Engineering. "However, larger amounts of energy, such as that seen in lasers or microwaves, would burn up anything in its path.

"Based on our calculations, it should be possible to use these novel metamaterials to increase the amount of power transmitted without the negative effects," Urzhumov said.

The results of the Duke research were published online in the journal Physical Review B. Urzhumov works in the laboratory of David R. Smith, William Bevan Professor of electrical and computer engineering at Pratt School of Engineering. Smith's team was the first demonstrate that similar metamaterials could act as a cloaking device in 2006.

Just as the metamaterial in the cloaking device appeared to make a volume of space "disappear," in the latest work, the metamaterial would make it seem as if there was no space between the transmitter and the recipient, Urzhumov said. Therefore, he said, the loss of power should be minimal.

Urzhumov's research is an offshoot of "superlens" research conducted in Smith's laboratory. Traditional lenses get their focusing power by controlling rays as they pass through the two outside surfaces of the lens. On the other hand, the superlens, which is in fact a metamaterial, directs waves within the bulk of the lens between the outside surfaces, giving researchers a much greater control over whatever passes through it.

The metamaterial used in wireless power transmission would likely be made of hundreds to thousands – depending on the application – of individual thin conducting loops arranged into an array. Each piece is made from the same copper-on-fiberglass substrate used in printed circuit boards, with excess copper etched away. These pieces can then be arranged in an almost infinite variety of configurations.

"The system would need to be tailored to the specific recipient device, in essence the source and target would need to be 'tuned' to each other," Urzhumov said. "This new understanding of how matematerials can be fabricated and arranged should help make the design of wireless power transmission systems more focused."

The analysis performed at Duke was inspired by recent studies at Mitsubishi Electric Research Labs (MERL), an industrial partner of the Duke Center for Metamaterials and Integrated Plasmonics. MERL is currently investigating metamaterials for wireless power transfer. The Duke researchers said that with these new insights into the effects of metamaterials, developing actual devices can be more targeted and efficient.

The Duke University research was supported by a Multidisciplinary University Research Initiative (MURI) grant through the Air Force Office of Scientific Research and the U.S. Army Research Office.

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>