Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel man-made material could facilitate wireless power

24.05.2011
Electrical engineers at Duke University have determined that unique man-made materials should theoretically make it possible to improve the power transfer to small devices, such as laptops or cell phones, or ultimately to larger ones, such as cars or elevators, without wires.

This advance is made possible by the recent ability to fabricate exotic composite materials known as metamaterials, which are not so much a single substance, but an entire man-made structure that can be engineered to exhibit properties not readily found in nature. In fact, the metamaterial used in earlier Duke studies, and which would likely be used in future wireless power transmission systems, resembles a miniature set of tan Venetian blinds.

Theoretically, this metamaterial can improve the efficiency of "recharging" devices without wires. As power passes from the transmitting device to the receiving device, most if not all of it scatters and dissipates unless the two devices are extremely close together. However, the metamaterial postulated by the Duke researchers, which would be situated between the energy source and the "recipient" device, greatly refocuses the energy transmitted and permits the energy to traverse the open space between with minimal loss of power.

"We currently have the ability to transmit small amounts of power over short distances, such as in radio frequency identification (RFID) devices," said Yaroslav Urzhumov, assistant research professor in electrical and computer engineering at Duke's Pratt School of Engineering. "However, larger amounts of energy, such as that seen in lasers or microwaves, would burn up anything in its path.

"Based on our calculations, it should be possible to use these novel metamaterials to increase the amount of power transmitted without the negative effects," Urzhumov said.

The results of the Duke research were published online in the journal Physical Review B. Urzhumov works in the laboratory of David R. Smith, William Bevan Professor of electrical and computer engineering at Pratt School of Engineering. Smith's team was the first demonstrate that similar metamaterials could act as a cloaking device in 2006.

Just as the metamaterial in the cloaking device appeared to make a volume of space "disappear," in the latest work, the metamaterial would make it seem as if there was no space between the transmitter and the recipient, Urzhumov said. Therefore, he said, the loss of power should be minimal.

Urzhumov's research is an offshoot of "superlens" research conducted in Smith's laboratory. Traditional lenses get their focusing power by controlling rays as they pass through the two outside surfaces of the lens. On the other hand, the superlens, which is in fact a metamaterial, directs waves within the bulk of the lens between the outside surfaces, giving researchers a much greater control over whatever passes through it.

The metamaterial used in wireless power transmission would likely be made of hundreds to thousands – depending on the application – of individual thin conducting loops arranged into an array. Each piece is made from the same copper-on-fiberglass substrate used in printed circuit boards, with excess copper etched away. These pieces can then be arranged in an almost infinite variety of configurations.

"The system would need to be tailored to the specific recipient device, in essence the source and target would need to be 'tuned' to each other," Urzhumov said. "This new understanding of how matematerials can be fabricated and arranged should help make the design of wireless power transmission systems more focused."

The analysis performed at Duke was inspired by recent studies at Mitsubishi Electric Research Labs (MERL), an industrial partner of the Duke Center for Metamaterials and Integrated Plasmonics. MERL is currently investigating metamaterials for wireless power transfer. The Duke researchers said that with these new insights into the effects of metamaterials, developing actual devices can be more targeted and efficient.

The Duke University research was supported by a Multidisciplinary University Research Initiative (MURI) grant through the Air Force Office of Scientific Research and the U.S. Army Research Office.

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>