Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making the Most of Your CT-Scan

30.01.2012
New computer modelling techniques for biomaterials enhance the possibilities of CT-data exploitation.

X-ray photography has been used for decades for medical purposes. Now, scientists have found new ways of obtaining precise and comprehensive data from x-ray computer tomography.

In the project BIO-CT-EXPLOIT, an international team of mathematicians, physicists, and engineers figured out new ways to extract valuable information from the data obtained in CT scans. The research project has led to new computer codes for medical applications. In future, they will be used for bone implants, surgery, and tissue engineering.

“If we want to make the most of our x-ray data, we need to have an excellent understanding of the microstructure we are looking at”, says project coordinator Professor Christian Hellmich from the Vienna University of Technology. “We created detailed, voxel-specific computer models of biological tissue. That way, we can gain information from the CT-scans which has not been accessible up until now.” The research team has pioneered concepts for the extraction of chemical information from CT-scans. Using micro-mechanical computer modelling, this information can be converted into a 3D-map of specific material properties. “It is an unparalleled, highly reliable simulation tool for structural design purposes”, Christian Hellmich says. It should not be difficult to use the newly developed computer codes for real-life applications: “Our prototype tools are fully compatible and pre-tailored for commercial simulation packages and the software that comes with commercial CT-devices”, says Hellmich.

Cooperation of Industry and Academic Research
In the BIO-CT-EXPLOIT-project, academic research and private companies collaborated very closely. Four private enterprises (Simpleware Ltd, InMatrixs, CADFEM GmbH, Skyscan NV.) and four academic partners (Vienna University of Technology, Universita Politecnica delle Marche, Politechnika Warszawska, Hochschule für Angewandte Wissenschaften Hamburg) joined forces to create computer codes, which are supposed to lead to commercially available software tools in the future. The consortium was coordinated by the Institute of Materials and Structures at the Vienna University of Technology. The project started on December 1, 2009 – funded by the European Union through the 7th Framework Programme within the programme “Research for the benefit of small and medium-sized enterprises (SMEs)”. Now, the funding period is over and the program is completed. “In only two years, we have accomplished our goals – the collaboration was very successful”, says coordinator Christian Hellmich.

Software Tool for Dentists
CADFEM, one of the private research partners, offers a complete portfolio of leading software tools for numerical simulations (particularly Finite Element analyses and Computer Aided Design and their interfaces). In the context of the joint research project, CADFEM has developed a software tool which allows a dentist to perform patient-specific simulations of a dental implant. With this tool, a dentist can calculate the stress pattern around the implant in the mandible for getting information on potential mechanical overloading of the bone. The results of the finite-element simulation significantly depend on a realistic characterization of the mechanical properties of the bone tissue. Previously, CADFEM modeled the mechanical properties of the bone tissue in a simplified manner and did not account for all effects (e.g. anisotropy, microstructure, correlation between gray values and stiffness) of the real bone.

Now, CADFEM can perform much more realistic simulations of patient-specific models. The technology provided by the academic research partners to CADFEM can directly be implement it into their existing software tool. The new technology developed within the BIO-CT-EXPLOIT project will have a huge impact on CADFEM’s further developments in the field of biomechanics, and helps them to better capture the behavior of bone tissues and tissue engineering scaffolds

3D modelling and image evaluation
SIMPLEWARE offers world-leading software and services for the conversion of 3D image data into high-quality CAD, Rapid Prototype, CFD, and Finite Element models. SIMPLEWARE customers range from international blue chip corporations to research institutes and universities world-wide. The determination of realistic elasticity properties from CT-data based micromechanics, as provided in an unprecedented fashion through the BIO-CT-EXPLOIT project, will significantly extend SIMPLEWARE’s portfolio in realistic simulation tools for complex problems related to bio-structures - and beyond.

SkyScan microtomography is available in a range of easy-to-use desktop instruments, which generate 3D images of the enduser’s samples’ morphology and internal microstructure, with resolution down to the sub-micrometer level. Software for visualization and analysis in 3D is included with all SkyScan systems. BIO-CT-EXPLOIT paved the way ot extending the software portfolio towards unique, novel features, such as image improvement through artefact removal, bone chemical composition, and mechanical property maps.

Skeletal Tissue Engineering

INMATRIXS Ltd was founded as an academic spin-off company by the Russian Academy of Science (RAS), Institute for Physical Chemistry of Ceramics. InMatrixs is a biomedical device and skeletal tissue engineering company to manufacture medical products based on calcium phosphate. The Company’s goal is to provide integrated and cost-effective healthcare solutions based on advanced tissue engineering concepts for the regeneration of damaged skeletal tissues, with particular emphasis on bone. BIO-CT-EXPLOIT has helped to unravel structure-property relations in INMATRIXS ceramics, and provided numerical tools to show the beneficial properties of these biomaterials. As such computer-aided quality assessment is expected to reach significant impotance in the future, BIO-CT-EXPLOIT has put INMATRIXS in a priviledged market position.

The SMEs and RTDs plan future collaboration, both with regards to commercialization of the produced tools, and for identification of exciting new research avenues.

Links:
http://bio-ct-exploit.imws.tuwien.ac.at
www.cadfem.de
www.simpleware.com
www.skyscan.be

Contact:
christian.hellmich@tuwien .ac.at (Christian Hellmich, TU Wien)
cmueller@cadfem.de (Christoph Müller, CADFEM)
p.young@simpleware.com (Philippe Young, SIMPLEWARE)
evi.bongaers@skyscan.be (Evi Bongaers, SKYSCAN)
vskomlev@gmail.com (Vladimir Komlev, INMATRIXS)

Dr. Florian Aigner | Technische Universität Wien
Further information:
http://www.tuwien.ac.at

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>