Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The “Magnificent Seven” of European astroparticle physics unveiled to the world

29.09.2008
Today Europeans presented to the world their strategy for the future of astroparticle physics. What is dark matter? What is the origin of cosmic rays? What is the role of violent cosmic processes? Can we detect gravitational waves?
With seven types of major large-scale projects physicists want to find the answers to some of the most exciting questions about the Universe:

• CTA, a large array of Cherenkov Telescopes for detection of cosmic high-energy gamma rays

• KM3NeT, a cubic kilometre-scale neutrino telescope in the Mediterranean Sea

• Ton-scale detectors for dark matter searches

• A ton-scale detector for the determination of the fundamental nature and mass of neutrinos

• A Megaton-scale detector for proton decay’s search, neutrino astrophysics & investigation of neutrino properties

• A large array for the detection of charged cosmic rays

• A third-generation underground gravitational antenna

“New exciting discoveries lie ahead; it is up to us to take the lead on them in the next decade.” says Christian Spiering from DESY – Germany, Chairman of the Roadmap Committee. After two years of roadmap process, the publication of The European Strategy for Astroparticle Physics is an important step for the field outlining a leading role for Europe in this increasingly globalised endeavour.

From undersea and underground laboratories to the most isolated deserts and outer space, astroparticle physics experiments accept very exciting challenges. It is a promising and rapidly growing field of research at the intersection of particle physics, cosmology and astrophysics, aiming to detect the most elusive particles, and to penetrate the most intimate secrets of the Universe. "If I was a young man, I would definetely go to astroparticle physics" said Carlo Rubbia, Noble Prize in physics in 1984.

To insure the coordination of astroparticle physics at the European level, research agencies from 13 countries joined their efforts within the ASPERA* European network, an ERA-Net funded by the European Commission. Thanks to the work achieved through ASPERA, European countries for the first time have a common tool to programme jointly and share their efforts in astroparticle physics.

This ambitious programme will gather European countries to open new exciting windows to the Universe, and the most advanced projects such as CTA (high-energy gamma rays) and KM3NeT (high-energy neutrinos) could start construction by 2012. The complete funding of this billion-scale programme would need a smooth yearly increase of current investments for astroparticle physics, amounting to an integrated increase of about 50% in a ten-year period.

“The timely realization of the Magnificent Seven is a big challenge” says the coordinator of ASPERA Prof. Stavros Katsanevas (IN2P3/CNRS) - France, “But we are confident that none will be killed contrary to what happens in the film, as the European agencies and ApPEC* support these priorities and the same also emerge in other continents. It is important that we coordinate and share costs not only inside Europe but on a global scale.”

This is why beyond Europe, ASPERA welcomes on 29 and 30 September 2008 200 scientists and officials of funding agencies from all over the world, in view of international collaboration.

European astroparticle physicists also affirmed their support to Earth- and space-based missions to explore the phenomenon of “dark energy”, to the concept of a cooperative network of deep underground laboratories, and to a common call for innovative technologies in the field of astroparticle physics. In addition, they declared their wish to see the formation of a European Centre for Astroparticle Physics Theory.

Pictures available at:
http://www.aspera-eu.org/index.php?option=com_content&task=view&id=290
Find the European strategy for astroparticle physics online:
http://www.aspera-eu.org/images/stories/roadmap/aspera_roadmap.pdf
*Notes for editors:
ApPEC is the Astroparticle Physics European Coordination. It was founded in 2001 when six European scientific agencies took the initiative to coordinate and encourage astroparticle physics in Europe.

ASPERA, the AStroParticle European Research Area is a network of European national funding agencies responsible for astroparticle physics. ASPERA is funded by the European Commission as an ERA-NET. It comprises the following agencies: FNRS(Belgium), FWO(Belgium), MEYS(Czech Republic), CEA(France), CNRS(France), BMBF(Germany), PTDESY(Germany), DEMOKRITOS(Greece), INFN(Italy), FOM(Netherlands), FCT(Portugal), IFIN-HH(Romania), FECYT(Spain), MEC(Spain), SNF(Switzerland), VR(Sweden), STFC(United Kingdom) and the European organization CERN.

Contact:

ASPERA
Astroparticle physics for Europe
ASPERA press officer – CERN
Arnaud Marsollier
arnaud.marsollier@cern.ch
+41 22 767 37 09
ASPERA coordinator
Dr. Stavros Katsanevas
katsan@admin.in2p3.fr
+33 1 44 96 47 57
Chairman of ASPERA Roadmap
Committee
Dr. Christian Spiering
christian.spiering@desy.de
+49 33762 77218

Arnaud Marsollier | CERN
Further information:
http://www.aspera-eu.org

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>