Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

With lithium, more is definitely better

11.11.2011
News from the 53rd Annual Meeting of the APS Division of Plasma Physics

A team of scientists working at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) has found that increasing the amount of lithium coating in the wall of an experimental fusion reactor greatly improves the ability of experimentalists to contain the hot, ionized gas known as plasma. Adding more lithium also enhances certain plasma properties aiding the reaction, the researchers found.


As more lithium is added (with increasing discharge number in yellow), the plasma light changes from red (from recycling of the deuterium fuel gas) to green (lithium emission from the edge of the plasma) and the overall (recycling) light levels decrease. Credit: Princeton Plasma Physics Laboratory

"The lesson here for confining plasma is surprising and simple: When you use more and more lithium, the plasma confinement gets better and better," said Rajesh Maingi, a physicist from the Oak Ridge National Laboratory (ORNL) who is on long-term assignment to PPPL. "This is not what we expected to see. We thought the effect would taper off at some point. But it doesn't. When it comes to fusion plasmas, it's "the more, the merrier.'"

If plasma energy confinement is improved, a fusion reactor can, in principle, be made smaller and, therefore, cheaper. Energy confinement is a measure of how long (in seconds) power that is injected into the plasma stays in the plasma before leaking out to the walls.

Spraying lithium onto the inner surface of an experimental fusion device at PPPL known as the National Spherical Torus Experiment (NSTX) improves several other conditions for fusion, the experimenters found. The lithium reduced recycling—the problematic ricocheting of particles into the vessel wall and back into the plasma (Figure 1). Recycling leads to cooling, contamination, and, ultimately, dissipation of the energy of the plasma. In addition to reducing recycling, the lithium coating—and enhanced coatings based on it—also enhanced the reaction by decreasing chaotic instabilities both at the plasma's edge, and also on a larger scale.

The experiment's results indicate that fusion machine designers may be able to reduce the size and the level of heating in future devices designed to use lithium coating technologies.

In addition to Maingi, other researchers on the effort included: Stanley Kaye and Charles Skinner from PPPL, D.P. Boyle from Princeton University; and J.M. Canik from ORNL. This work recently appeared in Physical Review Letters 107 (2011) 145004.

The work is being presented at the 53rd Annual Meeting of the American Physical Society Division of Plasma Physics, being held Nov. 14-18, in Salt Lake City, Utah.

Abstracts:

BO4.00004 The continuous improvement of H-mode discharge performance with progressively increasing lithium coatings in NSTX
Session BO4: NSTX and Spherical Torus,
Ballroom E, Monday, November 16, 2011, 10:06AM:18AM

Saralyn Stewart | EurekAlert!
Further information:
http://www.aps.org

Further reports about: NSTX ORNL Physic Plasma technology fusion reactor lithium coating plasma physics

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>