Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can life emerge on planets around cooling stars?

30.11.2012
Astronomers find planets in strange places and wonder if they might support life. One such place would be in orbit around a white or brown dwarf. While neither is a star like the sun, both glow and so could be orbited by planets with the right ingredients for life.
No terrestrial, or Earth-like planets have yet been confirmed orbiting white or brown dwarfs, but there is no reason to assume they don’t exist. However, new research by Rory Barnes of the University of Washington and René Heller of Germany’s Leibniz Institute for Astrophysics Potsdam hints that planets orbiting white or brown dwarfs will prove poor candidates for life.

White dwarfs are the hot cores of dead stars and brown dwarfs are failed stars, objects not massive enough to start nuclear burning as the sun does. In theory, both can be bright enough to theoretically support a habitable zone — that swath of space just right for an orbiting planet’s surface water to be in liquid form, thus giving life a chance.

The inner edge of that just-right zone is where a planet starts to become a runaway greenhouse, such as Venus. That heating phenomenon removes the planet’s surface water and all chance of life — of habitability — is forever lost.

White and brown dwarfs share a common characteristic that sets them apart from normal stars like the sun: They slowly cool and become less luminous over time. And as they cool, their habitable zones gradually shrink inward. Thus, a planet that is found in the center of the habitable zone today must previously have spent time near the zone’s deadly inner edge.

Because of their past, such planet would “face a difficult path to habitability,” Barnes said, even if they’re discovered right in that habitable zone. Call it a sort of cosmic background check, revealing that the worlds probably lost the means to host life long before they became habitable zone residents.

“These planets, if we find them today in a current habitable zone, previously had to have gone through a phase which sterilized them forever,” Barnes said. Heller added, “So, even if they are located in the habitable zone today, they are dead.”

Barnes is the lead author of a paper published in November in the journal Astrobiology; and Heller is co-author.

For more information, contact Barnes at 206-543-8979 or rory@astro.washington.edu; or Heller at (0049) 331-7499-683 or rheller@aip.de

Rory Barnes | EurekAlert!
Further information:
http://www.washington.edu

More articles from Physics and Astronomy:

nachricht Telescopes team up to find distant Uranus-sized planet through microlensing
31.07.2015 | NASA/Goddard Space Flight Center

nachricht California 'rain debt' equal to average full year of precipitation
31.07.2015 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Tool making and additive technology exhibition: Fraunhofer IPT at Formnext

31.07.2015 | Trade Fair News

First Siemens-built Thameslink train arrives in London

31.07.2015 | Transportation and Logistics

California 'rain debt' equal to average full year of precipitation

31.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>