Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leaky, Star-Forming Galaxies Lead Johns Hopkins Researchers to Better Understand the Universe

13.10.2014

Focusing on large, star-forming galaxies, researchers at the Johns Hopkins University were able to measure radiation leaks in an effort to better understand how the universe evolved as the first stars were formed.

Sanchayeeta Borthakur, an assistant research scientist in the Department of Physics and Astronomy in the university’s Krieger School of Arts and Sciences, reports in a paper published online Oct. 9 in the journal Science that an indicator used for studying star-forming galaxies that leak radiation is an effective measurement tool for other scientists to use.

Borthakur wrote the paper with Timothy Heckman, the Dr. A. Hermann Pfund Professor and director of the Center for Astrophysical Sciences at Johns Hopkins, along with co-authors Claus Leitherer from the Space Telescope Science Institute and Roderik Overzier from the Observatorio Nacional in Rio de Janeiro, Brazil.

The researchers used the radiation leak measurement method to help find the ideal star-forming galaxy that contained holes in its cold gas cover. Studying the radiation that seeps through these holes has been a conundrum for scientists for years.

Consisting of thick, dense cold gas, the cover stretches across a galaxy like a blanket. While an effective tool for helping make stars, this cover presents a challenge for astrophysicists hoping to learn how the radiation that stars produce could be used in the ionization process. Scientists have been on a quest for decades to find just the right galaxy with this character trait.

“It’s like the ozone layer, but in reverse,” Borthakur said. “The ozone layer protects us from the sun’s radiation but we want the gas cover the other way around. The star forming regions in galaxies are covered with cold gases so the radiation cannot come out. If we can find out how the radiation gets out of the galaxy, we can learn what mechanisms ionized the universe.”

Borthakur said scientists know that these leaky galaxies exist, but finding one has been a problem. This, in turn, makes it difficult for researchers to have a clearer understanding of how the reionization process works.

For star-gazers, reionization is core to the history of the cosmos as it marks the birth of the very first stars and galaxies.

Moments after the start of the Big Bang, the hot, newly born universe began to expand and quickly cool. Several hundred thousand years later, free proton and electron particles in the universe began to connect to each other and form neutral hydrogen atoms. The neutral gas began to collapse into the first stars and galaxies, which then began to radiate brightly.

Using observations made with the Cosmic Origin Spectrograph onboard the Hubble Space Telescope, the research team found the right galaxy to study. In the study, the researchers credit a combination of unusually strong winds, intense radiation and a massive, highly star-forming galaxy for proving the validity of the indicator.

This method, first created by Heckman in 2001, can sort out what gas is present and also accurately measure the percentage of holes in the gas cover, said Borthakur.

“The confirmation of the indicator is key,” she said. “The implications are now people can use this indicator to study distant galaxies at longer wavelengths.”

This research was funded by NASA with grant number 12886.

Tracey Reeves | newswise
Further information:
http://www.jhu.edu

More articles from Physics and Astronomy:

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

nachricht Solar wind impacts on giant 'space hurricanes' may affect satellite safety
19.09.2017 | Embry-Riddle Aeronautical University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>