Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Large Hadron Collider - First Step In An Area Unknown To Mankind

14.11.2008
In September 2008, the "dreamlike" LHC (Large Hadron Collider) was finally started after a 14-year construction process directed by high energy physicists. Like a science fiction fantasy, researchers re-created a state of the universe 0.000000000001 of a second after the universe was born.
Ichiro Oba, Professor, Faculty of Science and Engineering
Kouhei Yorita, Associate Professor, Faculty of Science and Engineering
In September 2008, the "dreamlike" LHC (Large Hadron Collider) was finally started after a 14-year construction process directed by high energy physicists. Protons accelerating to 99.9999991% of the speed of light collided in a 27-kilometer circumference tunnel built 100 meters below the surface at CERN (European Organization for Nuclear Research), in the suburbs of Geneva on the border of Switzerland and France. Like an SF fantasy, researchers have re-created a state of the universe 0.000000000001 of a second after the universe was born.

What can we learn from the LHC?

To answer this question, we first must ask ourselves "What is it we don't yet know?" Elementary particle physics studies how to find the root of matter. This understanding is directly linked to the answer to the question of how the university was created. On the surface, there may be the impression that there is no problem that cannot be solved by the Standard Model. In actuality, however, it is merely an effective theory in which the Standard Model has endured through rigorous experimental verifications and in which the behavior of elementary particles have been clearly described. Unfortunately, we are not yet able to clearly answer the simple question, "When and how was the particle mass created?"

To answer to this question, the Standard Model framework calls for the existence of a yet unknown particle called the Higgs particle. Finding this particle is the primary goal of the LHC and is the first step in throwing light on the ultimate answer. If the Standard Model is correct in this energy range, the particle definitely can be found by the LHC. The LHC also has a more profound and intriguing story. For example, it is expected that the supersymmetry particle (SUSY) will be found and new and unprecedented phenomenon related in the extra-dimension will appear. The supersymmetry particle is a candidate for dark matter, which is said to occupy 23% of the universe. The world is watching the LHC.

Going to experimental verification from theory debate

This year's Nobel Prize in Physics went to three Japanese theoretical physicists: Yoichiro Nambu, Hidetoshi Maskawa and Makoto Kobayashi. This is great honor for Japan. Not only has their work contributed to establish a basis for current elementary particle physics but it has also played an important role in defining the direction in which these elementary particle "experiments" go. They have also been rigorously researching ways to prove experimental results. Their work clearly shows that theories and experiments stimulate each other, providing mankind with new insights through a long series of tremendous efforts. For elementary particle physics, however, theories precede experimental verification; countless heated discussions have been held and the experiments on verifying them have not been impossible to be performed. One reason is that the energy that can be generated by an experiment is limited. This is where the LHC comes onstage. As the result of efforts by thousands of engineers and experimental physicists, and international cooperative study, the totally unknown energy range of 14TeV can be experimentally verified. Following that understanding, LHC can be a prologue for elementary particle physics which, in previous times, worked experimentally and theoretically at the same time.

Current and future state

For the first time ever on September 10, protons were successfully circulated in the LHC ring. A helium leakage occurred that was caused by an electrical system failure and the experiment was delayed for two months. This type of problem is not unusual for such a large-scale experiment and is not serious concern. The fact that it was successful to circulating protons in even one direction is proof of the excellence of the technology and the tremendous effort of the engineers and physicists working on the accelerator. There is no doubt that the energy level will reach 14TeV next spring, opening up a new era for particle physics. Frankly speaking, nobody knows what's going to be discovered by the LHC. Regardless of whether there is a new discovery or, nothing is found in our expectations. it is assured that new mysteries will be uncovered, changing the modality of elementary particle physics and influencing not only elementary physics but also adjacent scientific fields. We are on the eve of a revolution.

The Japanese group has made large contributions to the project. Currently, 15 institutions and about 100 researchers from Japan are deeply involved in the project. These institutions include the High Energy Accelerator Research Organization (KEK) and the International Center for Elementary Particle Physics (the University of Tokyo). The contribution of Japan, not just to the LHC but also the ATLAS experimental group (an international research group for the detector installed at the collision point), is tremendous. It is very encouraging to know that Japanese researchers and engineers are assuming leadership not only in theoretical areas but also in experimental areas. The experiment group from Waseda University is also likely to become involved as a member of such a large-scale international experimental project. We must first prove to ourselves that we can contribute to the international community and continued to move ahead by probing intellectual curiosity to search for the truth. The LHC experiment has great possibilities in that it allows us to discover the unexpected and profound physical laws that govern the universe. New discoveries create new mysteries. This profound world is as endless as we human beings with our curiosity and ceaseless efforts.

Ichiro Oba, Professor, Faculty of Science and Engineering
Kouhei Yorita, Assistant Professor, Faculty of Science and Engineering

waseda university | ResearchSEA
Further information:
http://public.web.cern.ch/Public/
http://atlas.ch/
http://atlas.kek.jp/

Further reports about: LHC Large Hadron Collider Physic Science Universe particle physics studies

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>