Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Large Hadron Collider Restarts, Physicists Elated

Particle beams are once again zooming around the world’s most powerful particle accelerator, the Large Hadron Collider (LHC), at the CERN laboratory near Geneva, Switzerland, where a team of University of Massachusetts Amherst physicists run experiments to collect data on fundamental atomic particles. The work could reveal new states of matter and unveil the secrets of dark matter.

A clockwise circulating beam was established in the LHC’s 17-mile-diameter ring on Nov. 20, ending more than a year of repairs to the huge underground laboratory. It is now ready to begin creating high-energy particle collisions that may yield insights into the nature of the physical universe, scientists say. The accelerator is a tool used to study extremely small structures within an atom’s nucleus, as well as interactions between them.

UMass Amherst physicist Stephane Willocq and colleagues in the campus’ High Energy Physics group are involved in the ATLAS experiment, one of the two largest experiments ongoing at the LHC with more than 2,000 physicists collaborating. ATLAS stands for A Toroidal LHC ApparatuS.

Willocq says with the LHC back on line, the ATLAS detector can now begin searching for new discoveries in the head-on collisions of protons of extraordinarily high energy. “ATLAS will learn about the basic forces that have shaped our Universe since the beginning of time; forces which will determine its fate. Among the possible unknowns are the origin of mass, extra dimensions of space, unification of fundamental forces, and evidence for dark matter candidates in the Universe.”

He and faculty colleagues Benjamin Brau and Carlo Dallapiccola, with three postdoctoral research associates, five graduate students and three undergraduates, are developing software for the Muon Spectrometer, a detector that identifies and measures muon trajectories in a magnetic field to determine their momenta with high precision. Muons are fundamental particles like electrons but are 200 times heavier. As decay products of collisions, they are expected to lead to discovering new states of matter such as the Higgs boson, or dark matter.

As Willocq further explains, “We are leading several areas including detector performance. Our scientists are preparing searches for physics beyond the standard model using muon signatures. We’re particularly interested in understanding the impact and improving the performance of muon reconstruction at high energies. Initial work also focused on commissioning the detector and testing the performance of the reconstruction algorithms for physics analysis.”

The LHC circulated its first beams in September 2008, but suffered a serious malfunction nine days later. A failure in an electrical connection led to serious damage, and CERN has spent more than a year repairing and consolidating the machine to ensure that such an incident cannot happen again.

In congratulating the scientists and engineers who got the LHC back up and running, Dennis Kovar, associate director of science in the United States Department of Energy’s (DOE) high energy physics section, says “the LHC is a machine unprecedented in size, in complexity, and in the scope of the international collaboration that has built it over the last 15 years.”

The DOE invested $200 million in the construction of the LHC accelerator. About 150 scientists, engineers and technicians from three DOE national laboratories—Brookhaven Lab, Fermilab and Berkeley Lab—built critical accelerator components. They are joined by colleagues from DOE’s SLAC National Accelerator Laboratory and the University of Texas at Austin in ongoing LHC accelerator R&D.

Over the next few months, scientists will create collisions between two beams of protons at the LHC. These first LHC collisions will take place at relatively low energy. Operators will then raise the beam energy, aiming for collisions at world-record high energy collision levels in early 2010. When these are achieved, the hunt for discoveries at the LHC will begin.

“It’s great to see beam circulating in the LHC again” said CERN’s Director for Accelerators Steve Myers. “We’ve still got some way to go before physics can begin, but with this milestone we’re well on the way.” Willocq adds, “We are excited by the rapid turn-on of the LHC this year and the prospects for future discoveries.”

An estimated 10,000 people from 60 countries have helped design and build the LHC accelerator and its four massive particle detectors, including more than 1,700 scientists, engineers, students and technicians from 97 U.S. universities and laboratories in 32 states and Puerto Rico supported by the DOE Office of Science and the National Science Foundation.

Stephane Willocq | Newswise Science News
Further information:

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>



Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

More VideoLinks >>>