Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

JILA Team Finds New Parallel Between Cold Gases and 'Hot' Superconductors

08.07.2010
Scientists at JILA, working with Italian theorists, have discovered another notable similarity between ultracold atomic gases and high-temperature superconductors, suggesting there may be a relatively simple shared explanation for equivalent behaviors of the two very different systems.

Described in Nature Physics,* the new research lends more support to the idea that JILA studies of superfluidity (flow with zero friction) in atomic gases may help scientists understand far more complicated high-temperature superconductors, solids with zero resistance to electrical current at relatively high temperatures. Known high-temperature superconductors only superconduct well below room temperature, but a detailed understanding of how the materials work may one day lead to practical applications such as more efficient transmission of electricity across power grids.

JILA is operated jointly by the National Institute of Standards and Technology (NIST) and the University of Colorado at Boulder.

The JILA group studies how atoms in a Fermi gas** behave as they "cross over" from acting like a Bose Einstein condensate, in which atom pairs form tightly bound molecules, to behaving like pairs of separated electrons in a superconductor. In the new study, JILA scientists applied a technique they developed in 2008 to explore subtle energy properties of ultracold atoms. The technique is an adaptation of photoemission spectroscopy, long used to probe the energy of electrons in materials. A superconductor research group recently used electron photoemission spectroscopy to find evidence of electron pairing above the critical temperature where the material switches from a superconductor to a regular conductor. Why this duality occurs is a subject of debate.

The JILA scientists performed comparable measurements for an ultracold gas of potassium atoms at and above temperatures where superfluidity disappears. Like the superconductor group, the JILA team found evidence of atom pairing above the critical temperature. This demonstrates the existence of a so-called "pseudo-gap region" where the system retains some pairs of correlated fermions but not all characteristics of superfluidity. The findings were made possible in part by significant improvements in the signal strength of the atom photoemission spectroscopy technique since 2008.

"What makes this really interesting is that the two systems are actually very different, with the high-temperature superconductor being much more complicated than atomic gases," says NIST/JILA Fellow Deborah Jin. "The observation of similar behavior with similar measurements suggests that having a pseudogap phase does not require complicated explanations, such as lattice effects, two-dimensionality, or exotic pairing mechanisms."

Co-authors of the new paper are theorists from the Universita di Camerino in Italy. The research was funded by the National Science Foundation.

* J.P. Gaebler, J.T. Stewart, T.E. Drake and D.S. Jin, A. Perali, P. Pieri and G.C. Strinati. 2010. Observation of pseudogap behavior in a strongly interacting Fermi gas. Nature Physics. Posted online July 4.

** A Fermi gas is a collection of noninteracting particles called fermions, one of two categories of fundamental particles found in nature (bosons are the other). Identical fermions cannot occupy the same place at the same time.

Laura Ost | Newswise Science News
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>