Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jagged graphene can slice into cell membranes

11.07.2013
A collaboration of biologists, engineers, and material scientists at Brown University has found that jagged edges of graphene can easily pierce cell membranes, allowing graphene to enter the cell and disrupt normal function.

Understanding the mechanical forces of nanotoxicity should help engineers design safer materials at the nanoscale.


Rough edges at the nanoscale
The bottom corner of a piece of graphene penetrates a cell membrane. Mechanical properties — rough edges, sharp corners — can make graphene dangerous to human cells. Scale bar represents two microns. Credit: Kane lab/Brown University

Researchers from Brown University have shown how tiny graphene microsheets — ultra-thin materials with a number of commercial applications — could be big trouble for human cells.

The research shows that sharp corners and jagged protrusions along the edges of graphene sheets can easily pierce cell membranes. After the membrane is pierced, an entire graphene sheet can be pulled inside the cell where it may disrupt normal function. The new insight may be helpful in finding ways to minimize the potential toxicity of graphene, said Agnes Kane, chair of the Department of Pathology and Laboratory Medicine at Brown and one of the study’s authors.

“At a fundamental level, we want understand the features of these materials that are responsible for how they interact with cells,” Kane said. “If there’s some feature that is responsible for its toxicity, then maybe the engineers can engineer it out.”

The findings were published online July 9 in Proceedings of the National Academy of Sciences.

Discovered about a decade ago, graphene is a sheet of carbon just one atom thick. It is incredibly strong despite being so thin and has remarkable electronic, mechanical, and photonic properties. Commercial applications in small electronic devices, solar cells, batteries and even medical devices are just around the corner. But not much is known about what effect these materials might have if they get inside the body either during the manufacturing process or during a product’s lifecycle.

“These materials can be inhaled unintentionally, or they may be intentionally injected or implanted as components of new biomedical technologies,” said Robert Hurt, professor of engineering and one of the study’s authors. “So we want to understand how they interact with cells once inside the body.”

These latest findings come from an ongoing collaboration between biologists, engineers, and material scientists at Brown aimed at understanding the toxic potential of a wide variety of nanomaterials. Their work on graphene started with some seemingly contradictory findings.

Preliminary research by Kane’s biology group had shown that graphene sheets can indeed enter cells, but it wasn’t clear how they got there. Huajian Gao, professor of engineering, tried to explain those results using powerful computer simulations, but he ran into a problem. His models, which simulate interactions between graphene and cell membranes at the molecular level, suggested that it would be quite rare for a microsheet to pierce a cell. The energy barrier required for a sheet to cut the membrane was simply too high, even when the sheet hit edge first.

The problem turned out to be that those initial simulations assumed a perfectly square piece of graphene. In reality, graphene sheets are rarely so pristine. When graphene is exfoliated, or peeled away from thicker chunks of graphite, the sheets come off in oddly shaped flakes with jagged protrusions called asperities. When Gao reran his simulations with asperities included, the sheets were able to pierce the membrane much more easily.

Annette von dem Bussche, assistant professor of pathology and laboratory medicine, was able to verify the model experimentally. She placed human lung, skin and immune cells in Petri dishes along with graphene microsheets. Electron microscope images confirmed that graphene entered the cells starting at rough edges and corners. The experiments showed that even fairly large graphene sheets of up to 10 micrometers could be completely internalized by a cell.

“The engineers and the material scientists can analyze and describe these materials in great detail,” Kane said. “That allows us to better interpret the biological impacts of these materials. It’s really a wonderful collaboration.”

From here, the researchers will look in more detail into what happens once a graphene sheet gets inside the cell. But Kane says this initial study provides an important start in understanding the potential for graphene toxicity.

“This is about the safe design of nanomaterials,” she said. “They’re man-made materials, so we should be able to be clever and make them safer.”

Other contributors to the study were Brown graduate students Yinfeng Li (now a professor at Shanghai Jiao Tong University), Hongyan Yuan, and Megan Creighton. The research was supported by the National Science Foundation (grants CMMI-1028530 and CBET-1132446) and the Superfund Research Program of the National Institute of Environmental Health Sciences (grant P42 ES013660).

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

Kevin Stacey | EurekAlert!
Further information:
http://www.brown.edu

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>