Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ionic Liquid’s Makeup Measurably Non-Uniform at the Nanoscale

13.11.2009
Researchers at Texas Tech University, Queen’s University in Belfast, Ireland, the University of Rome and the National Research Council in Italy recently made a discovery about the non-uniform chemical compositions of ionic liquids that could lead to greater understanding and manipulation of these multi-purpose, designer solvents.

Their findings were published online in the Journal of Physics: Condensed Matter. The article was selected for inclusion in the Institute of Physics’ IOP Select, which is a special collection of articles chosen by IOP editors based on research showing significant breakthroughs or advancements, high degree of novelty and significant impact on future research.

Ionic liquids are a new frontier of research for chemists. Originally invented to replace volatile and toxic solvents such as benzene, they’re now used in high-efficiency solar cells, as cheaper, more environmentally friendly rocket fuel additives and to more effectively dissolve plant materials into biofuels. Since 1990, research on ionic liquids has grown exponentially.

“Their properties are strikingly different than those of most conventional liquids,” said Edward Quitevis, a professor of chemistry in the Texas Tech Department of Chemistry and Biochemistry. “A conventional liquid for the most part is composed of neutral molecules whereas an ionic liquid is composed entirely of ions.”

Because of their ability to be tailored and manipulated for specific applications, ionic liquids can be compared to a new form of Erector Set for chemists. By modifying the ions, scientists can create specific properties in the liquids to fit particular applications or discover new materials.

Each new discovery that adds to the understanding of ionic liquids leads to new possibilities for applications and materials, Quitevis said.

“An ionic liquid is basically a salt that happens to have a melting point at or about room temperature,” he said. “The reason why it’s a liquid and not a solid is because the ions are bulky and don’t crystallize readily. The more we learn about them, the more we can find new applications for them that we never could have imagined for conventional liquids.”

By using X-rays and lasers, researchers found that parts of the liquid at the nanoscopic level were not uniform. Some domains of the liquid may have had more or less density or viscosity compared to other domains. Also, these non-uniform domains could be measured.

“At the nanoscopic scale, these liquids are not uniform, compared to other liquids, such as water, where properties are all uniform throughout,” Quitevis said. “This non-uniformity is not random. These domains of non-uniformity are well defined and can be measured. And this nanoscopic non-uniformity was predicted in computer simulations, but never confirmed experimentally until recently.”

Understanding these types of attributes of ionic liquids can lead to more breakthroughs in the future, Quitevis said.

Quitevis’s work was funded by the National Science Foundation and the American Chemical Society Petroleum Research Fund.

For a copy of the study, visit the IOP Web site.

CONTACT: Edward Quitevis, professor of chemistry, Department of Chemistry and Biochemistry, Texas Tech University, (806) 742-3066, or edward.quitevis@ttu.edu.

Edward Quitevis | Newswise Science News
Further information:
http://www.ttu.edu

More articles from Physics and Astronomy:

nachricht Long-lived storage of a photonic qubit for worldwide teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Telescopes team up to study giant galaxy
12.12.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>