Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ionic Liquid’s Makeup Measurably Non-Uniform at the Nanoscale

13.11.2009
Researchers at Texas Tech University, Queen’s University in Belfast, Ireland, the University of Rome and the National Research Council in Italy recently made a discovery about the non-uniform chemical compositions of ionic liquids that could lead to greater understanding and manipulation of these multi-purpose, designer solvents.

Their findings were published online in the Journal of Physics: Condensed Matter. The article was selected for inclusion in the Institute of Physics’ IOP Select, which is a special collection of articles chosen by IOP editors based on research showing significant breakthroughs or advancements, high degree of novelty and significant impact on future research.

Ionic liquids are a new frontier of research for chemists. Originally invented to replace volatile and toxic solvents such as benzene, they’re now used in high-efficiency solar cells, as cheaper, more environmentally friendly rocket fuel additives and to more effectively dissolve plant materials into biofuels. Since 1990, research on ionic liquids has grown exponentially.

“Their properties are strikingly different than those of most conventional liquids,” said Edward Quitevis, a professor of chemistry in the Texas Tech Department of Chemistry and Biochemistry. “A conventional liquid for the most part is composed of neutral molecules whereas an ionic liquid is composed entirely of ions.”

Because of their ability to be tailored and manipulated for specific applications, ionic liquids can be compared to a new form of Erector Set for chemists. By modifying the ions, scientists can create specific properties in the liquids to fit particular applications or discover new materials.

Each new discovery that adds to the understanding of ionic liquids leads to new possibilities for applications and materials, Quitevis said.

“An ionic liquid is basically a salt that happens to have a melting point at or about room temperature,” he said. “The reason why it’s a liquid and not a solid is because the ions are bulky and don’t crystallize readily. The more we learn about them, the more we can find new applications for them that we never could have imagined for conventional liquids.”

By using X-rays and lasers, researchers found that parts of the liquid at the nanoscopic level were not uniform. Some domains of the liquid may have had more or less density or viscosity compared to other domains. Also, these non-uniform domains could be measured.

“At the nanoscopic scale, these liquids are not uniform, compared to other liquids, such as water, where properties are all uniform throughout,” Quitevis said. “This non-uniformity is not random. These domains of non-uniformity are well defined and can be measured. And this nanoscopic non-uniformity was predicted in computer simulations, but never confirmed experimentally until recently.”

Understanding these types of attributes of ionic liquids can lead to more breakthroughs in the future, Quitevis said.

Quitevis’s work was funded by the National Science Foundation and the American Chemical Society Petroleum Research Fund.

For a copy of the study, visit the IOP Web site.

CONTACT: Edward Quitevis, professor of chemistry, Department of Chemistry and Biochemistry, Texas Tech University, (806) 742-3066, or edward.quitevis@ttu.edu.

Edward Quitevis | Newswise Science News
Further information:
http://www.ttu.edu

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>