Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International collaboration replicates amplification of cosmic magnetic fields

02.06.2014

Astrophysicists have established that cosmic turbulence could have amplified magnetic fields to the strengths observed in interstellar space.

"Magnetic fields are ubiquitous in the universe," said Don Lamb, the Robert A. Millikan Distinguished Service Professor in Astronomy & Astrophysics at the University of Chicago. "We're pretty sure that the fields didn't exist at the beginning, at the Big Bang. So there's this fundamental question: how did magnetic fields arise?"


This video simulation shows how a laser that illuminates a small carbon rod launches a complex flow, consisting of supersonic shocks and turbulent flow. When the grid is present, turbulence becomes dominant and the self-generated magnetic field is significantly amplified. The top half of the simulation illustrates gas density per cubic centimeter, while the bottom half depicts strength of magnetic field.

Credit: University of Chicago Flash Center

Helping to answer that question, which is of fundamental importance to understanding the universe, were millions of hours of supercomputer simulations at Argonne National Laboratory. Lamb and his collaborators, led by scientists at the University of Oxford, report their findings in an article published in the June 1 issue of Nature Physics.

The paper describes experiments at the Vulcan laser facility of the United Kingdom's Rutherford Appleton Laboratory that recreates a supernova (exploding star) with beams 60,000 billion times more powerful than a laser pointer. The research was inspired by the detection of magnetic fields in Cassiopeia A, a supernova remnant, which are approximately 100 times stronger than those in adjacent interstellar space.

Physics at multiple scales

"It may sound surprising that a tabletop laboratory experiment that fits inside an average room can be used to study astrophysical objects that are light years across," said Gianluca Gregori, professor of physics at Oxford. "In reality, the laws of physics are the same everywhere, and physical processes can be scaled from one to the other in the same way that waves in a bucket are comparable to waves in the ocean. So our experiments can complement observations of events such as the Cassiopeia A supernova."

Making the advance possible was the extraordinarily close cooperation between Lamb's team at UChicago's Flash Center for Computational Science and Gregori's team of experimentalists.

"Because of the complexity of what's going on here, the simulations were absolutely vital to inferring exactly what's going on and therefore confirming that these mechanisms are happening and that they are behaving in the way that theory predicts," said Jena Meinecke, graduate student in physics at Oxford and lead author of the Nature Physics paper.

Magnetic fields range from quadrillionths of a gauss in the cosmic voids of the universe, to several microgauss in galaxies and galaxy clusters (ordinary refrigerator magnets have magnetic fields of approximately 50 gauss). Stars like the sun measure thousands of gauss. Neutron stars, which are the extremely compact, burned out cores of dead stars, exhibit the largest magnetic fields of all, ones exceeding quadrillions of gauss.

In 2012, Gregori's team successfully created small magnetic fields, called "seed fields," in the laboratory via an often-invoked effect called the Biermann battery mechanism. But how could seed fields grow to gigantic sizes in interstellar space? Building on their earlier findings, Gregori and his collaborators at 11 institutions worldwide now have demonstrated the amplification of magnetic fields by turbulence.

In their experiment, the scientists focused laser beams onto a small carbon rod sitting in a chamber filled with a low-density gas. The lasers, generating temperatures of a few million degrees, caused the rod to explode, creating a blast that expanded throughout the gas.

"The experiment demonstrated that as the blast of the explosion passes through the grid it becomes irregular and turbulent, just like the images from Cassiopeia," Gregori said.

Experimental variables

"The experimentalists knew all the physical variables at a given point. They knew exactly the temperature, the density, the velocities," said UChicago research scientist Petros Tzeferacos, a study co-author. Tzeferacos and his colleagues incorporated that data into their FLASH simulations.

"This allows us to benchmark the code against something that we can see," Tzeferacos said. Such benchmarking—called validation—shows that the simulations can reproduce the experimental data. The simulations consumed 20 million processing hours on both the Mira and Intrepid supercomputers at Argonne. Mira, which can perform 10 quadrillion calculations per second, is 20 times faster than Intrepid.

With validation in hand, all members of the collaboration could return repeatedly to the simulations to get answers to new questions regarding the physics they saw. "We could look at the velocity instead of the density of the magnetic field, or we might look at the pressure," Lamb said. "This simulation is a treasure trove of information about what's really going on. It's actually critical to understanding correctly what's really happening."

###

The magnetic field simulations were made possible by the addition of capabilities to the FLASH Code in recent years, funded by the Office of Advanced Simulation and Computing in the Department of Energy's National Nuclear Security Agency. Originally designed to support computer simulations of exploding stars, FLASH Code also now supports high-energy density physics simulations to better understand the properties of matter at high densities and high temperatures.

Citation:

"Turbulent amplification of magnetic fields in laboratory laser-produced shock waves," by J. Meinecke and 26 others, Nature Physics, June 1, 2014.

Funding:

U.S. Department of Energy through the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program.

Steve Koppes | Eurek Alert!

Further reports about: Cassiopeia Computational Magnetic Nature Oxford amplification interstellar physics waves

More articles from Physics and Astronomy:

nachricht Superconductivity: footballs with no resistance
09.02.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht A deep look into a single molecule
09.02.2016 | Physikalisch-Technische Bundesanstalt (PTB)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

Im Focus: Superconductivity: footballs with no resistance

Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications.

Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes...

Im Focus: Wbp2 is a novel deafness gene

Researchers at King’s College London and the Wellcome Trust Sanger Institute in the United Kingdom have for the first time demonstrated a direct link between the Wbp2 gene and progressive hearing loss. The scientists report that the loss of Wbp2 expression leads to progressive high-frequency hearing loss in mouse as well as in two clinical cases of children with deafness with no other obvious features. The results are published in EMBO Molecular Medicine.

The scientists have shown that hearing impairment is linked to hormonal signalling rather than to hair cell degeneration. Wbp2 is known as a transcriptional...

Im Focus: From allergens to anodes: Pollen derived battery electrodes

Pollens, the bane of allergy sufferers, could represent a boon for battery makers: Recent research has suggested their potential use as anodes in lithium-ion batteries.

"Our findings have demonstrated that renewable pollens could produce carbon architectures for anode applications in energy storage devices," said Vilas Pol, an...

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

Body temperature triggers newly developed polymer to change shape

09.02.2016 | Materials Sciences

Using renewable energy in heating networks more efficiently

09.02.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>