Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International collaboration replicates amplification of cosmic magnetic fields

02.06.2014

Astrophysicists have established that cosmic turbulence could have amplified magnetic fields to the strengths observed in interstellar space.

"Magnetic fields are ubiquitous in the universe," said Don Lamb, the Robert A. Millikan Distinguished Service Professor in Astronomy & Astrophysics at the University of Chicago. "We're pretty sure that the fields didn't exist at the beginning, at the Big Bang. So there's this fundamental question: how did magnetic fields arise?"


This video simulation shows how a laser that illuminates a small carbon rod launches a complex flow, consisting of supersonic shocks and turbulent flow. When the grid is present, turbulence becomes dominant and the self-generated magnetic field is significantly amplified. The top half of the simulation illustrates gas density per cubic centimeter, while the bottom half depicts strength of magnetic field.

Credit: University of Chicago Flash Center

Helping to answer that question, which is of fundamental importance to understanding the universe, were millions of hours of supercomputer simulations at Argonne National Laboratory. Lamb and his collaborators, led by scientists at the University of Oxford, report their findings in an article published in the June 1 issue of Nature Physics.

The paper describes experiments at the Vulcan laser facility of the United Kingdom's Rutherford Appleton Laboratory that recreates a supernova (exploding star) with beams 60,000 billion times more powerful than a laser pointer. The research was inspired by the detection of magnetic fields in Cassiopeia A, a supernova remnant, which are approximately 100 times stronger than those in adjacent interstellar space.

Physics at multiple scales

"It may sound surprising that a tabletop laboratory experiment that fits inside an average room can be used to study astrophysical objects that are light years across," said Gianluca Gregori, professor of physics at Oxford. "In reality, the laws of physics are the same everywhere, and physical processes can be scaled from one to the other in the same way that waves in a bucket are comparable to waves in the ocean. So our experiments can complement observations of events such as the Cassiopeia A supernova."

Making the advance possible was the extraordinarily close cooperation between Lamb's team at UChicago's Flash Center for Computational Science and Gregori's team of experimentalists.

"Because of the complexity of what's going on here, the simulations were absolutely vital to inferring exactly what's going on and therefore confirming that these mechanisms are happening and that they are behaving in the way that theory predicts," said Jena Meinecke, graduate student in physics at Oxford and lead author of the Nature Physics paper.

Magnetic fields range from quadrillionths of a gauss in the cosmic voids of the universe, to several microgauss in galaxies and galaxy clusters (ordinary refrigerator magnets have magnetic fields of approximately 50 gauss). Stars like the sun measure thousands of gauss. Neutron stars, which are the extremely compact, burned out cores of dead stars, exhibit the largest magnetic fields of all, ones exceeding quadrillions of gauss.

In 2012, Gregori's team successfully created small magnetic fields, called "seed fields," in the laboratory via an often-invoked effect called the Biermann battery mechanism. But how could seed fields grow to gigantic sizes in interstellar space? Building on their earlier findings, Gregori and his collaborators at 11 institutions worldwide now have demonstrated the amplification of magnetic fields by turbulence.

In their experiment, the scientists focused laser beams onto a small carbon rod sitting in a chamber filled with a low-density gas. The lasers, generating temperatures of a few million degrees, caused the rod to explode, creating a blast that expanded throughout the gas.

"The experiment demonstrated that as the blast of the explosion passes through the grid it becomes irregular and turbulent, just like the images from Cassiopeia," Gregori said.

Experimental variables

"The experimentalists knew all the physical variables at a given point. They knew exactly the temperature, the density, the velocities," said UChicago research scientist Petros Tzeferacos, a study co-author. Tzeferacos and his colleagues incorporated that data into their FLASH simulations.

"This allows us to benchmark the code against something that we can see," Tzeferacos said. Such benchmarking—called validation—shows that the simulations can reproduce the experimental data. The simulations consumed 20 million processing hours on both the Mira and Intrepid supercomputers at Argonne. Mira, which can perform 10 quadrillion calculations per second, is 20 times faster than Intrepid.

With validation in hand, all members of the collaboration could return repeatedly to the simulations to get answers to new questions regarding the physics they saw. "We could look at the velocity instead of the density of the magnetic field, or we might look at the pressure," Lamb said. "This simulation is a treasure trove of information about what's really going on. It's actually critical to understanding correctly what's really happening."

###

The magnetic field simulations were made possible by the addition of capabilities to the FLASH Code in recent years, funded by the Office of Advanced Simulation and Computing in the Department of Energy's National Nuclear Security Agency. Originally designed to support computer simulations of exploding stars, FLASH Code also now supports high-energy density physics simulations to better understand the properties of matter at high densities and high temperatures.

Citation:

"Turbulent amplification of magnetic fields in laboratory laser-produced shock waves," by J. Meinecke and 26 others, Nature Physics, June 1, 2014.

Funding:

U.S. Department of Energy through the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program.

Steve Koppes | Eurek Alert!

Further reports about: Cassiopeia Computational Magnetic Nature Oxford amplification interstellar physics waves

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Big data approach to predict protein structure

27.03.2017 | Life Sciences

Parallel computation provides deeper insight into brain function

27.03.2017 | Life Sciences

Weather extremes: Humans likely influence giant airstreams

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>