Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


International collaboration replicates amplification of cosmic magnetic fields


Astrophysicists have established that cosmic turbulence could have amplified magnetic fields to the strengths observed in interstellar space.

"Magnetic fields are ubiquitous in the universe," said Don Lamb, the Robert A. Millikan Distinguished Service Professor in Astronomy & Astrophysics at the University of Chicago. "We're pretty sure that the fields didn't exist at the beginning, at the Big Bang. So there's this fundamental question: how did magnetic fields arise?"

This video simulation shows how a laser that illuminates a small carbon rod launches a complex flow, consisting of supersonic shocks and turbulent flow. When the grid is present, turbulence becomes dominant and the self-generated magnetic field is significantly amplified. The top half of the simulation illustrates gas density per cubic centimeter, while the bottom half depicts strength of magnetic field.

Credit: University of Chicago Flash Center

Helping to answer that question, which is of fundamental importance to understanding the universe, were millions of hours of supercomputer simulations at Argonne National Laboratory. Lamb and his collaborators, led by scientists at the University of Oxford, report their findings in an article published in the June 1 issue of Nature Physics.

The paper describes experiments at the Vulcan laser facility of the United Kingdom's Rutherford Appleton Laboratory that recreates a supernova (exploding star) with beams 60,000 billion times more powerful than a laser pointer. The research was inspired by the detection of magnetic fields in Cassiopeia A, a supernova remnant, which are approximately 100 times stronger than those in adjacent interstellar space.

Physics at multiple scales

"It may sound surprising that a tabletop laboratory experiment that fits inside an average room can be used to study astrophysical objects that are light years across," said Gianluca Gregori, professor of physics at Oxford. "In reality, the laws of physics are the same everywhere, and physical processes can be scaled from one to the other in the same way that waves in a bucket are comparable to waves in the ocean. So our experiments can complement observations of events such as the Cassiopeia A supernova."

Making the advance possible was the extraordinarily close cooperation between Lamb's team at UChicago's Flash Center for Computational Science and Gregori's team of experimentalists.

"Because of the complexity of what's going on here, the simulations were absolutely vital to inferring exactly what's going on and therefore confirming that these mechanisms are happening and that they are behaving in the way that theory predicts," said Jena Meinecke, graduate student in physics at Oxford and lead author of the Nature Physics paper.

Magnetic fields range from quadrillionths of a gauss in the cosmic voids of the universe, to several microgauss in galaxies and galaxy clusters (ordinary refrigerator magnets have magnetic fields of approximately 50 gauss). Stars like the sun measure thousands of gauss. Neutron stars, which are the extremely compact, burned out cores of dead stars, exhibit the largest magnetic fields of all, ones exceeding quadrillions of gauss.

In 2012, Gregori's team successfully created small magnetic fields, called "seed fields," in the laboratory via an often-invoked effect called the Biermann battery mechanism. But how could seed fields grow to gigantic sizes in interstellar space? Building on their earlier findings, Gregori and his collaborators at 11 institutions worldwide now have demonstrated the amplification of magnetic fields by turbulence.

In their experiment, the scientists focused laser beams onto a small carbon rod sitting in a chamber filled with a low-density gas. The lasers, generating temperatures of a few million degrees, caused the rod to explode, creating a blast that expanded throughout the gas.

"The experiment demonstrated that as the blast of the explosion passes through the grid it becomes irregular and turbulent, just like the images from Cassiopeia," Gregori said.

Experimental variables

"The experimentalists knew all the physical variables at a given point. They knew exactly the temperature, the density, the velocities," said UChicago research scientist Petros Tzeferacos, a study co-author. Tzeferacos and his colleagues incorporated that data into their FLASH simulations.

"This allows us to benchmark the code against something that we can see," Tzeferacos said. Such benchmarking—called validation—shows that the simulations can reproduce the experimental data. The simulations consumed 20 million processing hours on both the Mira and Intrepid supercomputers at Argonne. Mira, which can perform 10 quadrillion calculations per second, is 20 times faster than Intrepid.

With validation in hand, all members of the collaboration could return repeatedly to the simulations to get answers to new questions regarding the physics they saw. "We could look at the velocity instead of the density of the magnetic field, or we might look at the pressure," Lamb said. "This simulation is a treasure trove of information about what's really going on. It's actually critical to understanding correctly what's really happening."


The magnetic field simulations were made possible by the addition of capabilities to the FLASH Code in recent years, funded by the Office of Advanced Simulation and Computing in the Department of Energy's National Nuclear Security Agency. Originally designed to support computer simulations of exploding stars, FLASH Code also now supports high-energy density physics simulations to better understand the properties of matter at high densities and high temperatures.


"Turbulent amplification of magnetic fields in laboratory laser-produced shock waves," by J. Meinecke and 26 others, Nature Physics, June 1, 2014.


U.S. Department of Energy through the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program.

Steve Koppes | Eurek Alert!

Further reports about: Cassiopeia Computational Magnetic Nature Oxford amplification interstellar physics waves

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>



Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

More VideoLinks >>>