Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New IMPRS "Precision Tests of Fundamental Symmetries" approved

03.12.2009
Under the auspices of the Max Planck Institute for Nuclear Physics in cooperation with the Ruprecht Karls University, Heidelberg as a centre of excellence will be enriched by a new International Max Planck Research School (IMPRS).

The new IMPRS "Precision Tests of Fundamental Symmetries" is organised by the departments of Prof. Klaus Blaum, Prof. Werner Hofmann and Prof. Manfred Lindner in collaboration with the Kirchhoff Institute for Physics, the Physics Institute and the Institute for Theoretical Physics at the University of Heidelberg. The school's topics are experimental and theoretical precision tests of fundamental symmetries in particle, nuclear, atomic and astroparticle physics.

With the setup of a new International Max Planck Research School "Precision Tests of Fundamental Symmetries" (IMPRS-PTFS), Heidelberg continues to gain international appeal for young scientists. In addition to the existing IMPRS "Astronomy and Cosmic Physics" (since 2004, MPI for Astronomy) and "Quantum Dynamics in Physics, Chemistry and Biology" (since 2007, MPI for Nuclear Physics) the new school now covers another active research field which is especially devoted to fundamental problems of particle, nuclear, atomic and astroparticle physics. Here, at the crossroads of the physics of the largest (cosmology) and smallest scales (particle physics) an outstanding experimental precision is required, as it is provided by the most advanced technologies in atomic and nuclear physics.

Symmetries play a fundamental role in the mathematical basis - the laws which govern the interaction of particles and their properties. Related questions concern the asymmetry between matter and antimatter in the universe, which we ultimately owe our existence, and the nature of "dark matter" and "dark energy", which together account for more than 95% of the total energy of the cosmos. In addition to precision experiments also innovative theoretical approaches are required and networking among the total of ten sub-regions results in a remarkable degree of interdisciplinarity.

Promoting the latter is another objective of the IMPRS-PTFS. At the same time the cooperation of the Max Planck Institute for Nuclear Physics with the University of Heidelberg is also being expanded: seventeen leading scientists from the Kirchhoff Institute for Physics, the Physics Institute and the Institute for Theoretical Physics, together with seven colleagues from the Max Planck Institute for Nuclear Physics take responsibility for the scientific program in research and teaching as tutors and lecturers. Two sections of the "Heidelberg Graduate School of Fundamental Physics", namely 'Astronomy and Cosmic Physics' and 'Quantum Dynamics and Complex Quantum Systems', are already successfully and synergistically linked to the two existing IMPRS. The new school will complement this cooperation to the third area, 'Fundamental Interactions and Cosmology'. Speaker of the IMPRS-PTFS is Prof. Manfred Lindner, his deputy is Prof. Klaus Blaum; Coordinator is Dr. Werner Rodejohann (all MPI for Nuclear Physics).

The Max Planck Society endows the school with annually € 350,000 for a period of six years. This figure includes 10 scholarships and funds for workshops and visiting scholars. Three scholarships are provided by the university, in addition to approximately 12 PhD positions provided by each of both partners. The school aims to achieve a share of more than 50% of foreign students. The new IMPRS-PTFS is scheduled to start on April 1st 2010.

Dr. Bernold Feuerstein | Max-Planck-Institut
Further information:
http://www.mpi-hd.mpg.de/imprs-ptfs
http://www.physik.uni-heidelberg.de/index.php?lang=en

Further reports about: Astronomy Cosmic IMPRS IMPRS-PTFS MPI Nuclear Physics Physic Quantum Symmetries Theoretical Physics

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>