Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New IMPRS "Precision Tests of Fundamental Symmetries" approved

Under the auspices of the Max Planck Institute for Nuclear Physics in cooperation with the Ruprecht Karls University, Heidelberg as a centre of excellence will be enriched by a new International Max Planck Research School (IMPRS).

The new IMPRS "Precision Tests of Fundamental Symmetries" is organised by the departments of Prof. Klaus Blaum, Prof. Werner Hofmann and Prof. Manfred Lindner in collaboration with the Kirchhoff Institute for Physics, the Physics Institute and the Institute for Theoretical Physics at the University of Heidelberg. The school's topics are experimental and theoretical precision tests of fundamental symmetries in particle, nuclear, atomic and astroparticle physics.

With the setup of a new International Max Planck Research School "Precision Tests of Fundamental Symmetries" (IMPRS-PTFS), Heidelberg continues to gain international appeal for young scientists. In addition to the existing IMPRS "Astronomy and Cosmic Physics" (since 2004, MPI for Astronomy) and "Quantum Dynamics in Physics, Chemistry and Biology" (since 2007, MPI for Nuclear Physics) the new school now covers another active research field which is especially devoted to fundamental problems of particle, nuclear, atomic and astroparticle physics. Here, at the crossroads of the physics of the largest (cosmology) and smallest scales (particle physics) an outstanding experimental precision is required, as it is provided by the most advanced technologies in atomic and nuclear physics.

Symmetries play a fundamental role in the mathematical basis - the laws which govern the interaction of particles and their properties. Related questions concern the asymmetry between matter and antimatter in the universe, which we ultimately owe our existence, and the nature of "dark matter" and "dark energy", which together account for more than 95% of the total energy of the cosmos. In addition to precision experiments also innovative theoretical approaches are required and networking among the total of ten sub-regions results in a remarkable degree of interdisciplinarity.

Promoting the latter is another objective of the IMPRS-PTFS. At the same time the cooperation of the Max Planck Institute for Nuclear Physics with the University of Heidelberg is also being expanded: seventeen leading scientists from the Kirchhoff Institute for Physics, the Physics Institute and the Institute for Theoretical Physics, together with seven colleagues from the Max Planck Institute for Nuclear Physics take responsibility for the scientific program in research and teaching as tutors and lecturers. Two sections of the "Heidelberg Graduate School of Fundamental Physics", namely 'Astronomy and Cosmic Physics' and 'Quantum Dynamics and Complex Quantum Systems', are already successfully and synergistically linked to the two existing IMPRS. The new school will complement this cooperation to the third area, 'Fundamental Interactions and Cosmology'. Speaker of the IMPRS-PTFS is Prof. Manfred Lindner, his deputy is Prof. Klaus Blaum; Coordinator is Dr. Werner Rodejohann (all MPI for Nuclear Physics).

The Max Planck Society endows the school with annually € 350,000 for a period of six years. This figure includes 10 scholarships and funds for workshops and visiting scholars. Three scholarships are provided by the university, in addition to approximately 12 PhD positions provided by each of both partners. The school aims to achieve a share of more than 50% of foreign students. The new IMPRS-PTFS is scheduled to start on April 1st 2010.

Dr. Bernold Feuerstein | Max-Planck-Institut
Further information:

Further reports about: Astronomy Cosmic IMPRS IMPRS-PTFS MPI Nuclear Physics Physic Quantum Symmetries Theoretical Physics

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>