Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New IMPRS "Precision Tests of Fundamental Symmetries" approved

03.12.2009
Under the auspices of the Max Planck Institute for Nuclear Physics in cooperation with the Ruprecht Karls University, Heidelberg as a centre of excellence will be enriched by a new International Max Planck Research School (IMPRS).

The new IMPRS "Precision Tests of Fundamental Symmetries" is organised by the departments of Prof. Klaus Blaum, Prof. Werner Hofmann and Prof. Manfred Lindner in collaboration with the Kirchhoff Institute for Physics, the Physics Institute and the Institute for Theoretical Physics at the University of Heidelberg. The school's topics are experimental and theoretical precision tests of fundamental symmetries in particle, nuclear, atomic and astroparticle physics.

With the setup of a new International Max Planck Research School "Precision Tests of Fundamental Symmetries" (IMPRS-PTFS), Heidelberg continues to gain international appeal for young scientists. In addition to the existing IMPRS "Astronomy and Cosmic Physics" (since 2004, MPI for Astronomy) and "Quantum Dynamics in Physics, Chemistry and Biology" (since 2007, MPI for Nuclear Physics) the new school now covers another active research field which is especially devoted to fundamental problems of particle, nuclear, atomic and astroparticle physics. Here, at the crossroads of the physics of the largest (cosmology) and smallest scales (particle physics) an outstanding experimental precision is required, as it is provided by the most advanced technologies in atomic and nuclear physics.

Symmetries play a fundamental role in the mathematical basis - the laws which govern the interaction of particles and their properties. Related questions concern the asymmetry between matter and antimatter in the universe, which we ultimately owe our existence, and the nature of "dark matter" and "dark energy", which together account for more than 95% of the total energy of the cosmos. In addition to precision experiments also innovative theoretical approaches are required and networking among the total of ten sub-regions results in a remarkable degree of interdisciplinarity.

Promoting the latter is another objective of the IMPRS-PTFS. At the same time the cooperation of the Max Planck Institute for Nuclear Physics with the University of Heidelberg is also being expanded: seventeen leading scientists from the Kirchhoff Institute for Physics, the Physics Institute and the Institute for Theoretical Physics, together with seven colleagues from the Max Planck Institute for Nuclear Physics take responsibility for the scientific program in research and teaching as tutors and lecturers. Two sections of the "Heidelberg Graduate School of Fundamental Physics", namely 'Astronomy and Cosmic Physics' and 'Quantum Dynamics and Complex Quantum Systems', are already successfully and synergistically linked to the two existing IMPRS. The new school will complement this cooperation to the third area, 'Fundamental Interactions and Cosmology'. Speaker of the IMPRS-PTFS is Prof. Manfred Lindner, his deputy is Prof. Klaus Blaum; Coordinator is Dr. Werner Rodejohann (all MPI for Nuclear Physics).

The Max Planck Society endows the school with annually € 350,000 for a period of six years. This figure includes 10 scholarships and funds for workshops and visiting scholars. Three scholarships are provided by the university, in addition to approximately 12 PhD positions provided by each of both partners. The school aims to achieve a share of more than 50% of foreign students. The new IMPRS-PTFS is scheduled to start on April 1st 2010.

Dr. Bernold Feuerstein | Max-Planck-Institut
Further information:
http://www.mpi-hd.mpg.de/imprs-ptfs
http://www.physik.uni-heidelberg.de/index.php?lang=en

Further reports about: Astronomy Cosmic IMPRS IMPRS-PTFS MPI Nuclear Physics Physic Quantum Symmetries Theoretical Physics

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>