Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New IMPRS "Precision Tests of Fundamental Symmetries" approved

Under the auspices of the Max Planck Institute for Nuclear Physics in cooperation with the Ruprecht Karls University, Heidelberg as a centre of excellence will be enriched by a new International Max Planck Research School (IMPRS).

The new IMPRS "Precision Tests of Fundamental Symmetries" is organised by the departments of Prof. Klaus Blaum, Prof. Werner Hofmann and Prof. Manfred Lindner in collaboration with the Kirchhoff Institute for Physics, the Physics Institute and the Institute for Theoretical Physics at the University of Heidelberg. The school's topics are experimental and theoretical precision tests of fundamental symmetries in particle, nuclear, atomic and astroparticle physics.

With the setup of a new International Max Planck Research School "Precision Tests of Fundamental Symmetries" (IMPRS-PTFS), Heidelberg continues to gain international appeal for young scientists. In addition to the existing IMPRS "Astronomy and Cosmic Physics" (since 2004, MPI for Astronomy) and "Quantum Dynamics in Physics, Chemistry and Biology" (since 2007, MPI for Nuclear Physics) the new school now covers another active research field which is especially devoted to fundamental problems of particle, nuclear, atomic and astroparticle physics. Here, at the crossroads of the physics of the largest (cosmology) and smallest scales (particle physics) an outstanding experimental precision is required, as it is provided by the most advanced technologies in atomic and nuclear physics.

Symmetries play a fundamental role in the mathematical basis - the laws which govern the interaction of particles and their properties. Related questions concern the asymmetry between matter and antimatter in the universe, which we ultimately owe our existence, and the nature of "dark matter" and "dark energy", which together account for more than 95% of the total energy of the cosmos. In addition to precision experiments also innovative theoretical approaches are required and networking among the total of ten sub-regions results in a remarkable degree of interdisciplinarity.

Promoting the latter is another objective of the IMPRS-PTFS. At the same time the cooperation of the Max Planck Institute for Nuclear Physics with the University of Heidelberg is also being expanded: seventeen leading scientists from the Kirchhoff Institute for Physics, the Physics Institute and the Institute for Theoretical Physics, together with seven colleagues from the Max Planck Institute for Nuclear Physics take responsibility for the scientific program in research and teaching as tutors and lecturers. Two sections of the "Heidelberg Graduate School of Fundamental Physics", namely 'Astronomy and Cosmic Physics' and 'Quantum Dynamics and Complex Quantum Systems', are already successfully and synergistically linked to the two existing IMPRS. The new school will complement this cooperation to the third area, 'Fundamental Interactions and Cosmology'. Speaker of the IMPRS-PTFS is Prof. Manfred Lindner, his deputy is Prof. Klaus Blaum; Coordinator is Dr. Werner Rodejohann (all MPI for Nuclear Physics).

The Max Planck Society endows the school with annually € 350,000 for a period of six years. This figure includes 10 scholarships and funds for workshops and visiting scholars. Three scholarships are provided by the university, in addition to approximately 12 PhD positions provided by each of both partners. The school aims to achieve a share of more than 50% of foreign students. The new IMPRS-PTFS is scheduled to start on April 1st 2010.

Dr. Bernold Feuerstein | Max-Planck-Institut
Further information:

Further reports about: Astronomy Cosmic IMPRS IMPRS-PTFS MPI Nuclear Physics Physic Quantum Symmetries Theoretical Physics

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>