Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

I'm forever imploding bubbles

09.04.2009
New sensor ensures our hospitals are hygienic by listening to collapsing bubbles

The National Physical Laboratory (NPL) has developed the first sensor capable of measuring localized ultrasonic cavitation – the implosion of bubbles in a liquid when a high frequency sound wave is applied.

The sensor will help hospitals ensure that their instruments are properly disinfected before they are used on patients. The device recently won the annual Outstanding Ultrasonics Product award from the Ultrasonic Industry Association.

Cavitation is used throughout the NHS by doctors and dentists to clean and disinfect surgical instruments. A high frequency sound wave is passed through a disinfecting liquid to create bubbles that implode. The force of each implosion removes contaminate particles from surrounding materials. Cavitation is one of the most effective cleaning processes. There are more than 200 000 places in a teaspoon of tap water where a bubble can emerge and implode, and the process is self-stimulating because the implosion of one bubble creates new sites for further bubbles to emerge. Until now there has been no accurate method of identifying how much cavitation takes place at different locations in a cleaning system, and therefore no measureable way to ensure the cleaning process is effective. The new sensor also means that technicians can fine-tune and optimise equipment so that only the energy required is used, reducing costs and environmental impact.

Previously the only way to measure cavitation rates has been to lower a piece of aluminium foil into the liquid and count the number of 'dents' caused by bubble implosion. NPL's new sensor takes a different approach by monitoring the acoustic signals generated when the bubbles implode. It listens to the bubbles as they collapse and uses the sound to identify how much cavitation is taking place at a given location.

"To spark cavitation we use ultrasonics to 'shout' at a liquid. Our sensor then listens to the response and tells us how much cavitation is taking place as a result of using that particular stimulus," explains Mark Hodnett, a Senior Research Scientist at NPL. "Cavitation is a powerful process but until now users have had no way to measure exactly how loud to shout in order to get a useful amount of bubbles, nor been able to quantify how energetic those bubbles are. They've previously had to rely on trial and error. This is dangerous when you are dealing with cleanliness in medical environments, and a waste of energy. The NPL sensor provides a new tool for improving cleaning systems and aiding instrument hygiene."

Sonic Systems has purchased one of NPL's sensors and say that it fills an important gap in the market. "There is nothing else like the NPL sensor available to sonic equipment manufacturers. We use it as part of our product development process. It has enabled us to verify the cavitation fields inside some of our more complex systems. This has given us the confidence to confirm to customers that our equipment is truly optimised."

National Physical Laboratory

The National Physical Laboratory (NPL) is one of the UK's leading science facilities and research centres. It is a world-leading centre of excellence in developing and applying the most accurate standards, science and technology available.

NPL occupies a unique position as the UK's National Measurement Institute and sits at the intersection between scientific discovery and real world application. Its expertise and original research have underpinned quality of life, innovation and competitiveness for UK citizens and business for more than a century:

NPL provides companies with access to world leading support and technical expertise, inspiring the absolute confidence required to realise competitive advantage from new materials, techniques and technologies

NPL expertise and services are crucial in a wide range of social applications - helping to save lives, protect the environment and enable citizens to feel safe and secure. Support in areas such as the development of advanced medical treatments and environmental monitoring helps secure a better quality of life for all

NPL develops and maintains the nation's primary measurement standards, supporting an infrastructure of traceable measurement throughout the UK and the world, to ensure accuracy and consistency.

Richard Moss | EurekAlert!
Further information:
http://www.npl.co.uk

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>