Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

I'm forever imploding bubbles

09.04.2009
New sensor ensures our hospitals are hygienic by listening to collapsing bubbles

The National Physical Laboratory (NPL) has developed the first sensor capable of measuring localized ultrasonic cavitation – the implosion of bubbles in a liquid when a high frequency sound wave is applied.

The sensor will help hospitals ensure that their instruments are properly disinfected before they are used on patients. The device recently won the annual Outstanding Ultrasonics Product award from the Ultrasonic Industry Association.

Cavitation is used throughout the NHS by doctors and dentists to clean and disinfect surgical instruments. A high frequency sound wave is passed through a disinfecting liquid to create bubbles that implode. The force of each implosion removes contaminate particles from surrounding materials. Cavitation is one of the most effective cleaning processes. There are more than 200 000 places in a teaspoon of tap water where a bubble can emerge and implode, and the process is self-stimulating because the implosion of one bubble creates new sites for further bubbles to emerge. Until now there has been no accurate method of identifying how much cavitation takes place at different locations in a cleaning system, and therefore no measureable way to ensure the cleaning process is effective. The new sensor also means that technicians can fine-tune and optimise equipment so that only the energy required is used, reducing costs and environmental impact.

Previously the only way to measure cavitation rates has been to lower a piece of aluminium foil into the liquid and count the number of 'dents' caused by bubble implosion. NPL's new sensor takes a different approach by monitoring the acoustic signals generated when the bubbles implode. It listens to the bubbles as they collapse and uses the sound to identify how much cavitation is taking place at a given location.

"To spark cavitation we use ultrasonics to 'shout' at a liquid. Our sensor then listens to the response and tells us how much cavitation is taking place as a result of using that particular stimulus," explains Mark Hodnett, a Senior Research Scientist at NPL. "Cavitation is a powerful process but until now users have had no way to measure exactly how loud to shout in order to get a useful amount of bubbles, nor been able to quantify how energetic those bubbles are. They've previously had to rely on trial and error. This is dangerous when you are dealing with cleanliness in medical environments, and a waste of energy. The NPL sensor provides a new tool for improving cleaning systems and aiding instrument hygiene."

Sonic Systems has purchased one of NPL's sensors and say that it fills an important gap in the market. "There is nothing else like the NPL sensor available to sonic equipment manufacturers. We use it as part of our product development process. It has enabled us to verify the cavitation fields inside some of our more complex systems. This has given us the confidence to confirm to customers that our equipment is truly optimised."

National Physical Laboratory

The National Physical Laboratory (NPL) is one of the UK's leading science facilities and research centres. It is a world-leading centre of excellence in developing and applying the most accurate standards, science and technology available.

NPL occupies a unique position as the UK's National Measurement Institute and sits at the intersection between scientific discovery and real world application. Its expertise and original research have underpinned quality of life, innovation and competitiveness for UK citizens and business for more than a century:

NPL provides companies with access to world leading support and technical expertise, inspiring the absolute confidence required to realise competitive advantage from new materials, techniques and technologies

NPL expertise and services are crucial in a wide range of social applications - helping to save lives, protect the environment and enable citizens to feel safe and secure. Support in areas such as the development of advanced medical treatments and environmental monitoring helps secure a better quality of life for all

NPL develops and maintains the nation's primary measurement standards, supporting an infrastructure of traceable measurement throughout the UK and the world, to ensure accuracy and consistency.

Richard Moss | EurekAlert!
Further information:
http://www.npl.co.uk

More articles from Physics and Astronomy:

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

nachricht Tracking a solar eruption through the solar system
16.08.2017 | American Geophysical Union

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>