Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble Shows Farthest Lensing Galaxy Yields Clues to Early Universe

01.08.2014

Astronomers using NASA's Hubble Space Telescope have unexpectedly discovered the most distant galaxy that acts as a cosmic magnifying glass. Seen here as it looked 9.6 billion years ago, this monster elliptical galaxy breaks the previous record-holder by 200 million years.

These "lensing" galaxies are so massive that their gravity bends, magnifies, and distorts light from objects behind it, a phenomenon called gravitational lensing.  Finding one in such a small area of the sky is so rare that you would normally have to survey a region hundreds of times larger to find just one.


The farthest cosmic lens yet found, a massive elliptical galaxy, is shown in the inset image at left. The galaxy existed 9.6 billion years ago and belongs to the galaxy cluster, IRC 0218.

Image Credit: NASA and ESA

The object behind the cosmic lens is a tiny spiral galaxy undergoing a rapid burst of star formation. Its light has taken 10.7 billion years to arrive here and seeing this chance alignment at such a great distance from Earth is a rare find. Locating more of these distant lensing galaxies will offer insight into how young galaxies in the early universe build themselves up into the massive dark-matter-dominated galaxies of today. Dark matter cannot be seen, but it accounts for the bulk of the universe's matter.

"When you look more than 9 billion years ago in the early universe, you don't expect to find this type of galaxy lensing at all," explained lead researcher Kim-Vy Tran of Texas A&M University in College Station. "It's very difficult to see an alignment between two galaxies in the early universe. Imagine holding a magnifying glass close to you and then moving it much farther away. When you look through a magnifying glass held at arm's length, the chances that you will see an enlarged object are high. But if you move the magnifying glass across the room, your chances of seeing the magnifying glass nearly perfectly aligned with another object beyond it diminishes."

... more about:
»Galaxy »Hubble »NASA »Space »Universe »dark »galaxies »gravitational »matter »object

Team members Kenneth Wong and Sherry Suyu of Academia Sinica Institute of Astronomy & Astrophysics (ASIAA) in Taipei, Taiwan, used the gravitational lensing from the chance alignment to measure the giant galaxy's total mass, including the amount of dark matter, by gauging the intensity of its lensing effects on the background galaxy's light. The giant foreground galaxy weighs 180 billion times more than our sun and is a massive galaxy for its time. It is also one of the brightest members of a distant cluster of galaxies, called IRC 0218.

"There are hundreds of lens galaxies that we know about, but almost all of them are relatively nearby, in cosmic terms," said Wong, first author on the team's science paper. "To find a lens as far away as this one is a very special discovery because we can learn about the dark-matter content of galaxies in the distant past. By comparing our analysis of this lens galaxy to the more nearby lenses, we can start to understand how that dark-matter content has evolved over time."

The team suspects the lensing galaxy continued to grow over the past 9 billion years, gaining stars and dark matter by cannibalizing neighboring galaxies. Tran explained that recent studies suggest these massive galaxies gain more dark matter than stars as they continue to grow. Astronomers had assumed dark matter and normal matter build up equally in a galaxy over time, but now know the ratio of dark matter to normal matter changes with time. The newly discovered distant lensing galaxy will eventually become much more massive than the Milky Way and will have more dark matter, too.

Tran and her team were studying star formation in two distant galaxy clusters, including IRC 0218, when they stumbled upon the gravitational lens. While analyzing spectrographic data from the W.M. Keck Observatory in Hawaii, Tran spotted a strong detection of hot hydrogen gas that appeared to arise from a giant elliptical galaxy. The detection was surprising because hot hydrogen gas is a clear signature of star birth. Previous observations showed that the giant elliptical, residing in the galaxy cluster IRC 0218, was an old, sedate galaxy that had stopped making stars a long time ago. Another puzzling discovery was that the young stars were at a much farther distance than the elliptical galaxy. Tran was very surprised, worried and thought her team made a major mistake with their observations.

The astronomer soon realized she hadn't made a mistake when she looked at the Hubble images taken in blue wavelengths, which revealed the glow of fledgling stars. The images, taken by Hubble's Advanced Camera for Surveys and the Wide Field Camera 3, revealed a blue, eyebrow-shaped object next to a smeared blue dot around the massive elliptical. Tran recognized the unusual features as the distorted, magnified images of a more distant galaxy behind the elliptical galaxy, the signature of a gravitational lens.

To confirm her gravitational-lens hypothesis, Tran's team analyzed Hubble archival data from two observing programs, the 3D-HST survey, a near-infrared spectroscopic survey taken with the Wide Field Camera 3, and the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, a large Hubble deep-sky program. The data turned up another fingerprint of hot gas connected to the more distant galaxy.

The distant galaxy is too small and far away for Hubble to determine its structure. So, team members analyzed the distribution of light in the object to infer its spiral shape. In addition, spiral galaxies are more plentiful during those early times. The Hubble images also revealed at least one bright compact region near the center. The team suspects the bright region is due to a flurry of star formation and is most likely composed of hot hydrogen gas heated by massive young stars. As Tran continues her star-formation study in galaxy clusters, she will be hunting for more signatures of gravitational lensing.

The team's results appeared in the July 10 issue of The Astrophysical Journal Letters.

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington.

For images and more information about Hubble, visit:

http://www.nasa.gov/hubble

http://hubblesite.org/news/2014/33

J.D. Harrington
Headquarters, Washington
202-358-5241
j.d.harrington@nasa.gov

Donna Weaver/Ray Villard
Space Telescope Science Institute, Baltimore, Md.
410-338-4493 / 410-338-4514
dweaver@stsci.edu / villard@stsci.edu 

Rob Gutro | Eurek Alert!
Further information:
http://www.nasa.gov/press/2014/july/hubble-shows-farthest-lensing-galaxy-yields-clues-to-early-universe/#.U9qi7PldWSp

Further reports about: Galaxy Hubble NASA Space Universe dark galaxies gravitational matter object

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>