Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble Probes Interior of Tarantula Nebula

10.01.2014
Like lifting a giant veil, the near-infrared vision of NASA's Hubble Space Telescope uncovers a dazzling new view deep inside the Tarantula Nebula.

Hubble reveals a glittering treasure trove of more than 800,000 stars and protostars embedded inside the nebula.


This huge Hubble Space Telescope mosaic, spanning a width of 600 light-years, shows a star factory of more the 800,000 stars being born. The stars are embedded inside the Tarantula Nebula.
Image Credit: NASA, ESA, and E. Sabbi/STScI

These observations were obtained as part of the Hubble Tarantula Treasury Program.

When complete, the program will produce a large catalog of stellar properties, which will allow astronomers to study a wide range of important topics related to star formation.

This near-infrared view reveals newly formed stars that are often embedded in clouds of dust, and only the near-infrared light can pass through these clouds.

The first results from this program have been published in the Astronomical Journal and are being presented at the 223rd meeting of the American Astronomical Society at National Harbor, Md.

Also known as 30 Doradus, the Tarantula Nebula is a raucous region of star birth that resides 170,000 light-years away in the Large Magellanic Cloud, a small, satellite galaxy of our Milky Way.

Because it contains the nearest observable super-cluster of stars, the nebula is a nearby laboratory for seeing close-up a firestorm of star birth that was much more common in the early universe. Hubble can resolve individual stars and many red protostars as well as aging red giants and supergiants, giving astronomers new insights into the stars' birth and evolution.

The huge Hubble mosaic, assembled from 438 separate images, spans 600 light-years.

Because of the mosaic's exquisite detail and sheer breadth, astronomers can follow how episodes of star birth migrate across the region in space and time.

Star formation in the Tarantula Nebula started tens of millions of years ago, though it was not confined to a specific region. Instead, as enough gas accumulated, pockets of star birth burst to life erratically, like the finale of a fireworks show.

"Because of the mosaic's exquisite detail and sheer breadth, we can follow how episodes of star birth migrate across the region in space and time," said Elena Sabbi, an astronomer at the Space Telescope Science Institute in Baltimore, Md., and the principal investigator of the observing team.

The new infrared Hubble mosaic is revealing a multitude of pockets of star formation.

These regions will likely merge into larger clusters.

The Tarantula Nebula's vigorous star birth may be fueled partly by gas stripped from a small nearby galaxy, the Small Magellanic Cloud. One question researchers hope to answer is whether supermassive stars always form in clusters, or whether they can be born in isolation.

Space Science Telescope Institute

Lynn Chandler | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/content/goddard/hubble-probes-interior-of-tarantula-nebula/

More articles from Physics and Astronomy:

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>