Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble Finds Blue Straggler Stars in Milky Way's Hub

27.05.2011
Probing the star-filled, ancient hub of our Milky Way, NASA's Hubble Space Telescope has found a rare class of oddball stars called blue stragglers, the first time such objects have been detected within our galaxy's bulge.

The size and nature of the blue straggler population detected in the bulge will allow astronomers to better understand if the bulge is exclusively old stars, or a mixture of both young and old stars. In addition, the discovery provides a new test case for formation models of the blue stragglers themselves.

Blue stragglers -- so named because they seem to be lagging behind in their rate of aging compared with the population from which they formed -- were first found inside ancient globular star clusters half a century ago. They have been detected in many globular and open star clusters, as well as among the stars in the solar neighborhood. But they have never been seen inside the core of our galaxy until Hubble was trained on the region.

Hubble astronomers found blue straggler stars in an extensive set of Hubble exposures of the Milky Way's crowded hub. Blue stragglers are much hotter -- and hence bluer-- than they should be for the aging neighborhood in which they live. Now that blue stragglers have at last been found within the bulge, the size and characteristics of this population will allow astronomers to better understand the still-controversial processes of star formation within the bulge.

The results, to be published in The Astrophysical Journal, are being reported today by lead author Will Clarkson of Indiana University and the University of California, Los Angeles, at the American Astronomical Society meeting in Boston, Mass.

These results support the idea that the Milky Way's central bulge stopped making stars billions of years ago. It is now home to aging Sun-like stars and cooler red dwarfs. Giant blue stars that once lived there exploded as supernovae billions of years ago. If our galaxy were the size of a dinner plate, the central bulge would be roughly the size of a grapefruit placed in the middle of the plate.

This discovery is a spin-off from a seven-day-long survey conducted in 2006 called the Sagittarius Window Eclipsing Extrasolar Planet Search (SWEEPS). Hubble peered at and obtained variability information for 180,000 stars in the crowded central bulge of our galaxy, 26,000 light-years away. The survey was intended to find hot Jupiter-class planets that orbit very close to their stars. But the SWEEPS team also uncovered 42 oddball blue stars among the bulge population with brightness and temperatures typical for stars much younger than ordinary bulge stars.

Blue stragglers have long been suspected to be living in the bulge. Until now, it has never been proven because younger stars in the disk of our galaxy lie along the line-of-sight to the core, confusing and contaminating the view.

But Hubble's view is so sharp that astronomers could distinguish the motion of the core population from foreground stars in the Milky Way. Bulge stars orbit the galactic nucleus at a different speed than foreground stars. Plotting their motion required returning to the SWEEPS target region with Hubble two years after the first-epoch observations were made.

Hence, the blue stragglers were identified as moving along with the other stars in the bulge. It's like looking into a deep, clear pond where the fish at the bottom of the pond are swimming at a faster rate than the fish closer to the surface.

"The size of the field of view on the sky is roughly that of the thickness of a human fingernail held at arm's length, and within this region, Hubble sees about a quarter million stars towards the bulge," Clarkson says. "Only the superb image quality and stability of Hubble allowed us to make this measurement in such a crowded field."

From the 42 candidate blue stragglers, the investigators estimate 18 to 37 of them are likely to be genuine blue stragglers, with the remainder consisting of a mixture of foreground objects and at most a small population of genuinely young bulge stars.

It's not clear how blue stragglers form, or if there is more than one mechanism at work. A common idea is that blue stragglers emerge from binary pairs. As the more massive star evolves and expands, the less massive star accretes material from the companion. This stirs up hydrogen fuel and causes the accreting star to undergo nuclear fusion at a faster rate. It burns hotter and bluer.

The seven-day observation allowed the fraction of blue straggler candidates presently in close binaries to be estimated by virtue of their changing light-curve. This is caused by the change of shape induced in one star due to

the tidal gravitational pull of its companion. "The SWEEPS program was designed to detect transiting planets through small light variations. Therefore, the program could easily detect the variability of binary pairs, which was crucial in confirming these are indeed blue stragglers," says Kailash Sahu of the Space Telescope Science Institute in Baltimore, Md., the principal investigator of the SWEEPS program.

The observations clearly indicate that if there is a young star population in the bulge, it is very small, and it was not detected in the SWEEPS program. "Although the Milky Way bulge is by far the closest galaxy bulge, several key aspects of its formation and subsequent evolution remain poorly understood," Clarkson says. "While the consensus is that the bulge largely stopped forming stars long ago, many details of its star-formation history remain controversial. The extent of the blue straggler population detected provides two new constraints for models of the star-formation history of the bulge."

For images and more information about blue stragglers in the galactic bulge, visit:

http://hubblesite.org/news/2011/16
http://www.nasa.gov/hubble
The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C.

Ray Villard | EurekAlert!
Further information:
http://www.indiana.edu

Further reports about: Hubble Milky Way Science TV Space Telescope Straggler Telescope massive star star cluster

More articles from Physics and Astronomy:

nachricht Turning entanglement upside down
22.05.2018 | Universität Innsbruck

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>