Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helical electron and nuclear spin order in quantum wires

11.02.2014
Physicists at the University of Basel have observed a spontaneous magnetic order of electron and nuclear spins in a quantum wire at temperatures of 0.1 kelvin.

In the past, this was possible only at much lower temperatures, typically in the microkelvin range. The coupling of nuclei and electrons creates a new state of matter whereby a nuclear spin order arises at a much higher temperature.


Helical order: The spins of the electrons and nuclei (red arrows) take the form of a helix rotating along the axis of the quantum wire. The blue ribbon is a guide to the eye for the helix.


Illustration: B. Braunecker, P. Simon, and D. Loss, Phys. Rev. B 80, 165119 (2009)

The results are consistent with a theoretical model developed in Basel a few years ago, as reported by the researchers in the scientific journal Physical Review Letters.

The researchers, led by Professor Dominik Zumbühl from the University of Basel’s Department of Physics, used quantum wires made from the semiconductor gallium arsenide. These are one-dimensional structures in which the electrons can move in only one spatial direction.

At temperatures above 10 kelvin, the quantum wires exhibited universal, quantized conductance, suggesting that the electron spins were not ordered. However, when the researchers used liquid helium to cool the wires to a temperature below 100 millikelvin (0.1 kelvin), the electronic measurements showed a drop in conductance by a factor of two, which would suggest a collective orientation of the electron spin. This state also remained constant when the researchers cooled the sample to even lower temperatures, down to 10 millikelvin.

Electron-nuclear spin coupling
The results are exceptional because this is the first time that nuclear spin order has been measured at temperatures as high as 0.1 kelvin. Previously, spontaneous nuclear spin order was observed only at much lower temperatures, typically below 1 microkelvin; i.e. five orders of magnitude lower in temperature.

The reason why nuclear spin order is possible already at 0.1 kelvin is that the nuclei of the gallium and arsenic atoms in these quantum wires couple to the electrons, which themselves act back on the nuclear spins, which again interact with the electrons, and so on. This feedback mechanism strongly amplifies the interaction between the magnetic moments, thus creating the combined nuclear and electron spin magnetism. This order is further stabilized by the fact that the electrons in such quantum wires have strong mutual interactions, bumping into each other like railcars on a single track.

Helical electron and nuclear spin order
Interestingly, in the ordered state, the spins of the electrons and nuclei do not all point in the same direction. Instead, they take the form of a helix rotating along the quantum wire. This helical arrangement is predicted by a theoretical model described by Professor Daniel Loss and collaborators at the University of Basel in 2009. According to this model, the conductance drops by a factor of two in the presence of a nuclear spin helix. All other existing theories are incompatible with the data from this experiment.
A step closer to the development of quantum computers
The results of the experiment are important for fundamental research, but are also interesting for the development of quantum computers based on electron spin as a unit of information (proposed by Daniel Loss and David P. DiVincenzo in 1997). In order for electron spins to be used for computation, they must be kept stable for a long period. However, the difficulty of controlling nuclear spins presents a major source of error for the stability of electron spins.

The work of the Basel physicists opens up new avenues for mitigating these disruptive nuclear spin fluctuations: with the nuclear spin order achieved in the experiment, it may be possible to generate much more stable units of information in the quantum wires.

In addition, the nuclear spins can be controlled with electronic fields, which was not previously possible. By applying a voltage, the electrons are expelled from the semiconductor, which dissolves the electron-nucleus coupling and the helical order.

International research partnership
The work was conducted by an international team led by Professor Dominik Zumbühl from the University of Basel’s Department of Physics; the team received support in the measurements from Harvard University (Professor Amir Yacoby). The nanowires originated from Princeton University (Loren N. Pfeiffer and Ken West).

The research was co-funded by the European Research Council, the Swiss National Science Foundation, the Basel Center for Quantum Computing and Quantum Coherence (Basel QC2 Center), the Swiss Nanoscience Institute and the NCCR Quantum Science & Technology (QSIT).

Original Citations
Experiment:
C. P. Scheller, T.-M. Liu, G. Barak, A. Yacoby, L. N. Pfeiffer, K. W. West, and D. M. Zumbühl
Possible Evidence for Helical Nuclear Spin Order in GaAs Quantum Wires
Physical Review Letters, published 10 February 2014 | doi: 10.1103/PhysRevLett.112.066801
Theoretical model:
B. Braunecker, P. Simon, and D. Loss
Nuclear magnetism and electron order in interacting one-dimensional conductors
Physical Review B, published 16 October 2009 | doi: 10.1103/PhysRevB.80.165119
Further Information
• Prof. Dr. Dominik Zumbühl, University of Basel, Department of Physics,
phone: +41 61 267 36 93, E-Mail: dominik.zumbuhl@unibas.ch
• Prof. Dr. Daniel Loss, University of Basel, Department of Physics,
phone: +41 61 267 37 49, E-Mail: daniel.loss@unibas.ch
Weitere Informationen:
http://dx.doi.org/10.1103/PhysRevLett.112.066801 - Abstract

Reto Caluori | Universität Basel
Further information:
http://www.unibas.ch

More articles from Physics and Astronomy:

nachricht Upside down and inside out
27.04.2015 | University of Cambridge

nachricht Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles
24.04.2015 | Korea Advanced Institute of Science and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

Im Focus: Drexel materials scientists putting a new spin on computing memory

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data.

Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting...

Im Focus: Exploding stars help to understand thunderclouds on Earth

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was discovered, more or less by coincidence, that cosmic rays provide suitable probes to measure electric fields within thunderclouds. This surprising finding is published in Physical Review Letters on April 24th. The measurements were performed with the LOFAR radio telescope located in the Netherlands.

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was...

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Northwestern scientists develop first liquid nanolaser

27.04.2015 | Life Sciences

The Future of Oil and Gas: Pumping Innovation in the Oil and Gas Industry

27.04.2015 | Power and Electrical Engineering

Upside down and inside out

27.04.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>