Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better way to harness waste heat

20.11.2009
New MIT research points the way to a technology that might make it possible to harvest much of the wasted heat produced by everything from computer processor chips to car engines to electric powerplants, and turn it into usable electricity.

More than half of the energy consumed worldwide is wasted, most of it in the form of excess heat. This new technology would allow conversion of waste heat into electricity with an efficiency several times greater than existing devices.

That kind of waste-energy harvesting might, for example, lead to cellphones with double the talk time, laptop computers that can operate twice as long before needing to be plugged in, or power plants that put out more electricity for a given amount of fuel.

Theory says that conversion of heat into electricity can never exceed a specific value called the Carnot Limit, based on a 19th-century formula for determining the maximum efficiency that any device can achieve in converting heat into work. But current commercial thermoelectric devices only achieve about one-tenth of that limit, says Peter Hagelstein, associate professor of electrical engineering. In experiments involving a different new technology, thermal diodes, Hagelstein worked with Yan Kucherov, a consultant for the Naval Research Laboratory, and coworkers to demonstrate efficiency as high as 40 percent of the Carnot Limit. The calculations show that this new kind of system could ultimately reach as much as 90 percent of that ceiling.

How they did it: Hagelstein and his team started from scratch rather than trying to improve the performance of existing devices. They carried out their analysis using a very simple system in which power was generated by a single quantum-dot device — a type of semiconductor in which the electrons and holes, which carry the electrical charges in the device, are very tightly confined in all three dimensions. By controlling all aspects of the device, they hoped to better understand how to design the ideal thermal-to-electric converter.

Hagelstein says that with present systems it's possible to efficiently convert heat into electricity, but with very little power. It's also possible to get plenty of electrical power — what is known as high-throughput power — from a less efficient, and therefore larger and more expensive system. "It's a tradeoff. You either get high efficiency or high throughput," says Hagelstein. But the team found that using their new system, it would be possible to get both at once, he says.

Next steps: The new technology depends on quantum dot devices, a specialized kind of chip in which charged particles are very narrowly confined to a very small region. Such devices are under development, but still a few years away from commercial availability.

Source: "Quantum-coupled single-electron thermal to electric conversion scheme" by D. M. Wu, P. L. Hagelstein, P. Chen, K. P. Sinha,3 and A. Meulenberg, in Journal of Applied Physics, published online Nov. 13, 2009 http://link.aip.org/link/?JAPIAU/106/094315/1

Funding: The work was partly funded by Draper Laboratory and MTPV Corp.

Jen Hirsch | EurekAlert!
Further information:
http://www.mit.edu

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

New High-Performance Center Translational Medical Engineering

26.04.2017 | Health and Medicine

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>