Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From graphene to graphane, now the possibilities are endless

04.08.2009
Ever since graphene was discovered in 2004, this one-atom thick, super strong, carbon-based electrical conductor has been billed as a "wonder material" that some physicists think could one day replace silicon in computer chips.

But graphene, which consists of carbon atoms arranged in a honeycomb lattice, has a major drawback when it comes to applications in electronics – it conducts electricity almost too well, making it hard to create graphene-based transistors that are suitable for integrated circuits.

In August's Physics World, Kostya Novoselov - a condensed-matter physicist from the Manchester University group that discovered graphene -- explains how their discovery of graphane, an insulating equivalent of graphene, may prove more versatile still.

Graphane has the same honeycomb structure as graphene, except that it is "spray-painted" with hydrogen atoms that attach themselves to the carbon. The resulting bonds between the hydrogen and carbon atoms effectively tie down the electrons that make graphene so conducting. Yet graphane retains the thinness, super-strength, flexibility and density of its older chemical cousin.

One advantage of graphane is that it could actually become easier to make the tiny strips of graphene needed for electronic circuits. Such structures are currently made rather crudely by taking a sheet of the material and effectively burning away everything except the bit you need. But now such strips could be made by simply coating the whole of a graphene sheet – except for the strip itself - with hydrogen. The narrow bit left free of hydrogen is your conducting graphene strip, surrounded by a much bigger graphane area that electrons cannot go down.

As if this is not enough, the physicists in Manchester have found that by gradually binding hydrogen to graphene they are able to drive the process of transforming a conducting material into an insulating one and watch what happens in between.

Perhaps most importantly of all, the discovery of graphane opens the flood gates to further chemical modifications of graphene. With metallic graphene at one end and insulating graphane at the other, can we fill in the divide between them with, say, graphene-based semiconductors or by, say, substituting hydrogen for fluorine?

As Professor Novoselov writes, "Being able to control the resistivity, optical transmittance and a material's work function would all be important for photonic devices like solar cells and liquid-crystal displays, for example, and altering mechanical properties and surface potential is at the heart of designing composite materials. Chemical modification of graphene – with graphane as its first example – uncovers a whole new dimension of research. The capabilities are practically endless."

Joseph Winters | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht NASA's SDO sees partial eclipse in space
29.05.2017 | NASA/Goddard Space Flight Center

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>