Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene and 'spintronics' combo looks promising

26.01.2011
A team of physicists has taken a big step toward the development of useful graphene spintronic devices. The physicists, from the City University of Hong Kong and the University of Science and Technology of China, present their findings in the American Institute of Physics' Applied Physics Letters.

Graphene, a two-dimensional crystalline form of carbon, is being touted as a sort of "Holy Grail" of materials. It boasts properties such as a breaking strength 200 times greater than steel and, of great interest to the semiconductor and data storage industries, electric currents that can blaze through it 100 times faster than in silicon.

Spintronic devices are being hotly pursued because they promise to be smaller, more versatile, and much faster than today's electronics. "Spin" is a quantum mechanical property that arises when a particle's intrinsic rotational momentum creates a tiny magnetic field. And spin has a direction, either "up" or "down." The direction can encode data in the 0s and 1s of the binary system, with the key here being that spin-based data storage doesn't disappear when the electric current stops.

"There is strong research interest in spintronic devices that process information using electron spins, because these novel devices offer better performance than traditional electronic devices and will likely replace them one day," says Kwok Sum Chan, professor of physics at the City University of Hong Kong "Graphene is an important material for spintronic devices because its electron spin can maintain its direction for a long time and, as a result, information stored isn't easily lost."

It is, however, difficult to generate a spin current in graphene, which would be a key part of carrying information in a graphene spintronic device. Chan and colleagues came up with a method to do just that. It involves using spin splitting in monolayer graphene generated by ferromagnetic proximity effect and adiabatic (a process that is slow compared to the speed of the electrons in the device) quantum pumping. They can control the degree of polarization of the spin current by varying the Fermi energy (the level in the distribution of electron energies in a solid at which a quantum state is equally likely to be occupied or empty), which they say is very important for meeting various application requirements.

The article, "Spin current generation by adiabatic pumping in monolayer graphene," by Qingtian Zhang, K. S. Chan, and Zijing Lin appears in the journal Applied Physics Letters. See: http://link.aip.org/link/applab/v98/i3/p032106/s1

Journalists may request a free PDF of this article by contacting jbardi@aip.org

NOTE: An image is available for journalists. Please contact jbardi@aip.org

CAPTION: This schematic of a graphene spin current pump shows a ferromagnetic layer deposited on a monolayer of graphene between two metal gates.

ABOUT APPLIED PHYSICS LETTERS

Applied Physics Letters, published by the American Institute of Physics, features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, Applied Physics Letters offers prompt publication of new experimental and theoretical papers bearing on applications of physics phenomena to all branches of science, engineering, and modern technology. Content is published online daily, collected into weekly online and printed issues (52 issues per year). See: http://apl.aip.org/

ABOUT AIP

The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht NASA's SDO sees partial eclipse in space
29.05.2017 | NASA/Goddard Space Flight Center

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>