Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Grains Gang Up to Bear Brunt of Missile and Meteorite Impacts

12.12.2012
Missile and meteorite impacts are more complex at the granular level than scientists previously thought

High-speed video of projectiles slamming into a bed of disks has given scientists a new microscopic picture of the way a meteorite or missile transfers the energy of its impact to sand and dirt grains.


The way a meteorite or missile transfers the energy of its impact to sand and dirt grains is far more complex than scientists thought. Impact illustration courtesy of NASA.

The transfer is jerky, not smooth. "It was surprising just how unsmooth the slow-down of the intruding object was," Duke physicist Robert Behringer said. His team describes their new videos and impact analysis in the Dec. 7 Physical Review Letters. The research may change the way scientists model meteorite and missile impacts and their effects.

Scientists previously assumed that the slowing down would be smooth and that any sound wave would travel through a granular material in a regular, uniform pattern, similar to the way noise from a clap of the hands diffuses evenly in all directions through the air. But using high-speed video, Behringer, his graduate student Abram Clark and Lou Kondic of the New Jersey Institute of Technology have shown a very different behavior for the sound wave and grains during a collision.

In the study, supported by the Defense Threat Reduction Agency, the team shot bronze disks into a narrow bed of photoelastic grains and used an ultrafast camera to track the collision energy as it shifted from the disk to the beads. The footage shows that the bronze disk loses most of its energy in intense, sporadic acoustic pulses along networks of grains, or force chains, in the bed of beads.

"This phenomenon was so hard to observe before because of how fast the force chains travel," Behringer said. The standard movie rate is about 30 frames per second. To capture the path of energy down the force chains, the scientists had to use a camera that could capture 40,000 frames per second, 1300 times faster than a normal video, because the sound pulses move at such high speeds.

The scientists shot the intruding disks into the photoelastic grains at speeds up to 6.5 meters per second, about 15 miles per hour. On impact, the force chains in the disks started moving the energy away from the intruding object, dumping it down deep in the bed of disks like the drainpipes of a septic system carrying water and waste away from a house, Behringer said.

The speed of the bronze disk was well under sonic or super-sonic speed, which could make the patterns of energy transfer substantially different, the team noted in the paper. "For supersonic speeds, it's kind of like the car chases that happen in markets in movies. People can't get out of the way fast enough. Similarly the pulses wouldn't clear the chain networks and the forces would back up rather than get carried away from the intruder," Behringer said.

Studying the impacts at sonic and supersonic speeds, however, is a set of experiments that requires different grain particles, Behringer said, adding it's one the team may try soon. He also explained that once a missile or meteor drops below sonic speeds, the grains absorbing its impact would carry the energy and momentum away jerkily and sporadically, just as the team's new microscopic picture shows.

Citation:

"Particle Scale Dynamics in Granular Impact." Clark, A., Kondic, L., and Behringer, R. 2012. Physical Review Letters, 5:137. DOI: 10.1103/Physics.5.137

Ashley Yeager | EurekAlert!
Further information:
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>