Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Grains Gang Up to Bear Brunt of Missile and Meteorite Impacts

12.12.2012
Missile and meteorite impacts are more complex at the granular level than scientists previously thought

High-speed video of projectiles slamming into a bed of disks has given scientists a new microscopic picture of the way a meteorite or missile transfers the energy of its impact to sand and dirt grains.


The way a meteorite or missile transfers the energy of its impact to sand and dirt grains is far more complex than scientists thought. Impact illustration courtesy of NASA.

The transfer is jerky, not smooth. "It was surprising just how unsmooth the slow-down of the intruding object was," Duke physicist Robert Behringer said. His team describes their new videos and impact analysis in the Dec. 7 Physical Review Letters. The research may change the way scientists model meteorite and missile impacts and their effects.

Scientists previously assumed that the slowing down would be smooth and that any sound wave would travel through a granular material in a regular, uniform pattern, similar to the way noise from a clap of the hands diffuses evenly in all directions through the air. But using high-speed video, Behringer, his graduate student Abram Clark and Lou Kondic of the New Jersey Institute of Technology have shown a very different behavior for the sound wave and grains during a collision.

In the study, supported by the Defense Threat Reduction Agency, the team shot bronze disks into a narrow bed of photoelastic grains and used an ultrafast camera to track the collision energy as it shifted from the disk to the beads. The footage shows that the bronze disk loses most of its energy in intense, sporadic acoustic pulses along networks of grains, or force chains, in the bed of beads.

"This phenomenon was so hard to observe before because of how fast the force chains travel," Behringer said. The standard movie rate is about 30 frames per second. To capture the path of energy down the force chains, the scientists had to use a camera that could capture 40,000 frames per second, 1300 times faster than a normal video, because the sound pulses move at such high speeds.

The scientists shot the intruding disks into the photoelastic grains at speeds up to 6.5 meters per second, about 15 miles per hour. On impact, the force chains in the disks started moving the energy away from the intruding object, dumping it down deep in the bed of disks like the drainpipes of a septic system carrying water and waste away from a house, Behringer said.

The speed of the bronze disk was well under sonic or super-sonic speed, which could make the patterns of energy transfer substantially different, the team noted in the paper. "For supersonic speeds, it's kind of like the car chases that happen in markets in movies. People can't get out of the way fast enough. Similarly the pulses wouldn't clear the chain networks and the forces would back up rather than get carried away from the intruder," Behringer said.

Studying the impacts at sonic and supersonic speeds, however, is a set of experiments that requires different grain particles, Behringer said, adding it's one the team may try soon. He also explained that once a missile or meteor drops below sonic speeds, the grains absorbing its impact would carry the energy and momentum away jerkily and sporadically, just as the team's new microscopic picture shows.

Citation:

"Particle Scale Dynamics in Granular Impact." Clark, A., Kondic, L., and Behringer, R. 2012. Physical Review Letters, 5:137. DOI: 10.1103/Physics.5.137

Ashley Yeager | EurekAlert!
Further information:
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>