Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant telescope tackles orbit and size of exoplanet

16.05.2014

Using one of the world's largest telescopes, a Lawrence Livermore team and international collaborators have tracked the orbit of a planet at least four times the size of Jupiter.

The scientists were able to identify the orbit of the exoplanet, Beta Pictoris b, which sits 63 light years from our solar system, by using the Gemini Planet Imager's (GPI) next-generation, high-contrast adaptive optics (AO) system. This approach is sometimes referred to as extreme AO.


Lawrence Livermore researchers and international collaborators have refined estimates of the orbit and size of the exoplanet Beta Pictoris b.


The Gemini Planet Imager captured this first light image of Beta Pictoris b, a planet orbiting the star Beta Pictoris. The star, Beta Pictoris, is blocked in this image by a mask so its light doesn't interfere with the light of the planet.

The Gemini Planet Imager snapped an amazingly clear and bright image of the gas giant Beta Pictoris b after an exposure of just one minute.

By using a series of these images and calibrating the AO system and camera, researchers were able to refine the estimate of the planet's orbit by looking at the two disks around its parent star. Disks, which are made up of dense gas and debris, surround young newly formed stars. The team observed that the planet is not aligned with Beta Pictoris' (its star's) main debris disk but is aligned to and potentially interacting with an inner warped component disk.

"Our goal is to understand how these planetary systems have developed," said Lisa Poyneer, one of the lead Lawrence Livermore authors of a paper appearing in a recent edition of the journal, Proceedings of the National Academy of Sciences. "If Beta Pictoris b is warping the disk, that helps us see how the planet-forming disk in our own solar system might have evolved long ago."

Furthermore, the team predicts that there is a small chance that the planet will "transit," that is, partially block its star, as seen from Earth in late 2017. This would allow a very precise measurement of the planet's size. Poyneer concludes: "GPI also measures the planet's spectrum, and hence chemical composition. Knowing what it is made of and how big it is will help us figure out how it formed."

For the past decade, Lawrence Livermore has been leading a multi-institutional team in the design, engineering, building and optimization of GPI, which is used for high-contrast imaging to better study faint planets or dusty disks next to bright stars. Astronomers -- including a team at LLNL-- have made direct images of a handful of extrasolar planets by adapting astronomical cameras built for other purposes. GPI is the first fully optimized planet imager, designed from the ground up for exoplanet imaging and deployed on one of the world's biggest telescopes, the 8-meter Gemini South telescope in Chile.

Poyneer said the team is assessing how the AO system is performing and making adjustments as necessary so that it can image even more exoplanets. "The system is functioning very well and enabling new science already, but we're further improving its performance," she said.

Other Livermore scientists include Bruce Macintosh, now at Stanford University, Brian Bauman and David Palmer. The research appears in the May 12 online edition of PNAS

More Information

"First light of the Gemini Planet Imager," Proceedings of the National Academy of Sciences, May 12, 2014.

Gemini Planet Imager

Adaptive Optics

"Out of this world first light images emerge from Gemini Planet Imager," LLNL news release, Jan. 7, 2014.
 

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | Eurek Alert!
Further information:
https://www.llnl.gov/news/newsreleases/2014/May/NR-14-05-04.html#.U3YZvmGKDct

Further reports about: Astronomers Chile DOE GPI Gemini Laboratory Pictoris Planet calibrating exposure

More articles from Physics and Astronomy:

nachricht Present-day measurements yield insights into clouds of the past
27.05.2016 | Paul Scherrer Institut (PSI)

nachricht NASA scientist suggests possible link between primordial black holes and dark matter
25.05.2016 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>