Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant telescope tackles orbit and size of exoplanet

16.05.2014

Using one of the world's largest telescopes, a Lawrence Livermore team and international collaborators have tracked the orbit of a planet at least four times the size of Jupiter.

The scientists were able to identify the orbit of the exoplanet, Beta Pictoris b, which sits 63 light years from our solar system, by using the Gemini Planet Imager's (GPI) next-generation, high-contrast adaptive optics (AO) system. This approach is sometimes referred to as extreme AO.


Lawrence Livermore researchers and international collaborators have refined estimates of the orbit and size of the exoplanet Beta Pictoris b.


The Gemini Planet Imager captured this first light image of Beta Pictoris b, a planet orbiting the star Beta Pictoris. The star, Beta Pictoris, is blocked in this image by a mask so its light doesn't interfere with the light of the planet.

The Gemini Planet Imager snapped an amazingly clear and bright image of the gas giant Beta Pictoris b after an exposure of just one minute.

By using a series of these images and calibrating the AO system and camera, researchers were able to refine the estimate of the planet's orbit by looking at the two disks around its parent star. Disks, which are made up of dense gas and debris, surround young newly formed stars. The team observed that the planet is not aligned with Beta Pictoris' (its star's) main debris disk but is aligned to and potentially interacting with an inner warped component disk.

"Our goal is to understand how these planetary systems have developed," said Lisa Poyneer, one of the lead Lawrence Livermore authors of a paper appearing in a recent edition of the journal, Proceedings of the National Academy of Sciences. "If Beta Pictoris b is warping the disk, that helps us see how the planet-forming disk in our own solar system might have evolved long ago."

Furthermore, the team predicts that there is a small chance that the planet will "transit," that is, partially block its star, as seen from Earth in late 2017. This would allow a very precise measurement of the planet's size. Poyneer concludes: "GPI also measures the planet's spectrum, and hence chemical composition. Knowing what it is made of and how big it is will help us figure out how it formed."

For the past decade, Lawrence Livermore has been leading a multi-institutional team in the design, engineering, building and optimization of GPI, which is used for high-contrast imaging to better study faint planets or dusty disks next to bright stars. Astronomers -- including a team at LLNL-- have made direct images of a handful of extrasolar planets by adapting astronomical cameras built for other purposes. GPI is the first fully optimized planet imager, designed from the ground up for exoplanet imaging and deployed on one of the world's biggest telescopes, the 8-meter Gemini South telescope in Chile.

Poyneer said the team is assessing how the AO system is performing and making adjustments as necessary so that it can image even more exoplanets. "The system is functioning very well and enabling new science already, but we're further improving its performance," she said.

Other Livermore scientists include Bruce Macintosh, now at Stanford University, Brian Bauman and David Palmer. The research appears in the May 12 online edition of PNAS

More Information

"First light of the Gemini Planet Imager," Proceedings of the National Academy of Sciences, May 12, 2014.

Gemini Planet Imager

Adaptive Optics

"Out of this world first light images emerge from Gemini Planet Imager," LLNL news release, Jan. 7, 2014.
 

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | Eurek Alert!
Further information:
https://www.llnl.gov/news/newsreleases/2014/May/NR-14-05-04.html#.U3YZvmGKDct

Further reports about: Astronomers Chile DOE GPI Gemini Laboratory Pictoris Planet calibrating exposure

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>