Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant telescope tackles orbit and size of exoplanet

16.05.2014

Using one of the world's largest telescopes, a Lawrence Livermore team and international collaborators have tracked the orbit of a planet at least four times the size of Jupiter.

The scientists were able to identify the orbit of the exoplanet, Beta Pictoris b, which sits 63 light years from our solar system, by using the Gemini Planet Imager's (GPI) next-generation, high-contrast adaptive optics (AO) system. This approach is sometimes referred to as extreme AO.


Lawrence Livermore researchers and international collaborators have refined estimates of the orbit and size of the exoplanet Beta Pictoris b.


The Gemini Planet Imager captured this first light image of Beta Pictoris b, a planet orbiting the star Beta Pictoris. The star, Beta Pictoris, is blocked in this image by a mask so its light doesn't interfere with the light of the planet.

The Gemini Planet Imager snapped an amazingly clear and bright image of the gas giant Beta Pictoris b after an exposure of just one minute.

By using a series of these images and calibrating the AO system and camera, researchers were able to refine the estimate of the planet's orbit by looking at the two disks around its parent star. Disks, which are made up of dense gas and debris, surround young newly formed stars. The team observed that the planet is not aligned with Beta Pictoris' (its star's) main debris disk but is aligned to and potentially interacting with an inner warped component disk.

"Our goal is to understand how these planetary systems have developed," said Lisa Poyneer, one of the lead Lawrence Livermore authors of a paper appearing in a recent edition of the journal, Proceedings of the National Academy of Sciences. "If Beta Pictoris b is warping the disk, that helps us see how the planet-forming disk in our own solar system might have evolved long ago."

Furthermore, the team predicts that there is a small chance that the planet will "transit," that is, partially block its star, as seen from Earth in late 2017. This would allow a very precise measurement of the planet's size. Poyneer concludes: "GPI also measures the planet's spectrum, and hence chemical composition. Knowing what it is made of and how big it is will help us figure out how it formed."

For the past decade, Lawrence Livermore has been leading a multi-institutional team in the design, engineering, building and optimization of GPI, which is used for high-contrast imaging to better study faint planets or dusty disks next to bright stars. Astronomers -- including a team at LLNL-- have made direct images of a handful of extrasolar planets by adapting astronomical cameras built for other purposes. GPI is the first fully optimized planet imager, designed from the ground up for exoplanet imaging and deployed on one of the world's biggest telescopes, the 8-meter Gemini South telescope in Chile.

Poyneer said the team is assessing how the AO system is performing and making adjustments as necessary so that it can image even more exoplanets. "The system is functioning very well and enabling new science already, but we're further improving its performance," she said.

Other Livermore scientists include Bruce Macintosh, now at Stanford University, Brian Bauman and David Palmer. The research appears in the May 12 online edition of PNAS

More Information

"First light of the Gemini Planet Imager," Proceedings of the National Academy of Sciences, May 12, 2014.

Gemini Planet Imager

Adaptive Optics

"Out of this world first light images emerge from Gemini Planet Imager," LLNL news release, Jan. 7, 2014.
 

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | Eurek Alert!
Further information:
https://www.llnl.gov/news/newsreleases/2014/May/NR-14-05-04.html#.U3YZvmGKDct

Further reports about: Astronomers Chile DOE GPI Gemini Laboratory Pictoris Planet calibrating exposure

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>