Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Full 3-D Invisibility Cloak in Visible Light

02.05.2011
Watching things disappear “is an amazing experience,” admits Joachim Fischer of the Karlsruhe Institute of Technology in Germany. But making items vanish is not the reason he creates invisibility cloaks. Rather, the magic-like tricks are attractive demonstrations of the fantastic capabilities that new optical theories and nanotechnology construction methods now enable.

This new area, called “transformation optics” has turned modern optical design on its ear by showing how to manipulate light in ways long thought to be impossible. They promise to improve dramatically such light-based technologies as microscopes, lenses, chip manufacturing and data communications.

In his talk at this year's Conference on Lasers and Electro Optics (CLEO: 2011, May 1 - 6 in Baltimore), Fischer will describe the first-ever demonstration of a three-dimensional invisibility cloak that works for visible light—red light at a wavelength of 700 nm—independent of its polarization (orientation). Previous cloaks required longer wavelength light, such as microwaves or infrared, or required the light to have a single, specific polarization.

Fischer makes the tiny cloak—less than half the cross-section of a human-hair—by direct laser writing (i.e. lithography) into a polymer material to create an intricate structure that resembles a miniature woodpile. The precisely varying thickness of the “logs” enables the cloak to bend light in new ways. The key to this achievement was incorporating several aspects of a diffraction-unlimited microscopy technique into the team’s 3-D direct writing process for building the cloak. The dramatically increased resolution of the improved process enabled the team to create log spacings narrow enough to work in red light.

“If, in the future, we can halve again the log spacing of this red cloak, we could make one that would cover the entire visible spectrum,” Fischer added.

Practical applications of combining transformation optics with advanced 3-D lithography (a customized version of the fabrication steps used to make microcircuits) include flat, aberration-free lenses that can be easily miniaturized for use in integrated optical chips, and optical “black holes” for concentrating and absorbing light. If the latter can also be made to work for visible light, they will be useful in solar cells, since 90 percent of the Sun’s energy reaches Earth as visible and near-infrared light.

Presentation QTuG5 “Three-dimensional invisibility carpet cloak at 700 nm wavelength,” by Joachim Fischer et al. is at 11 a.m. Tuesday, May 3. Fischer et al. will also present CML1, “Three-Dimensional Laser Lithography with Conceptually Diffraction-Unlimited Lateral and Axial Resolution,” at 10:15 a.m. Monday, May 2.

CLEO: 2011 Program Information
CLEO: 2011 unites the fields of lasers and optoelectronics by bringing together all aspects of laser technology, from basic research to industry applications. The main broad topics areas at the meeting are fundamental science, science and innovations, applications and technology, and market focus. An exposition featuring 300 participating companies will be held concurrently with the scientific presentations.

Plenary Session keynote speakers include Donald Keck, retired vice president of Corning, talking about making the first low-loss optical fibers; James Fujimoto of MIT, talking about medical imaging using optical coherence tomography (OCT); Mordechai (Moti) Segev of the Technion-Israel Institute of Technology, speaking about the localization of light; and Susumu Noda of Kyoto University, talking about the control of photons in photonic crystals.

Online resources:

• Conference program: http://www.cleoconference.org/Conference_Program
• CLEO: Expo: http://www.cleoconference.org/exhibit_hall
• Press Center: http://www.cleoconference.org/media_center
• Plenary Session: http://www.cleoconference.org/Conference_Program
• Special Symposia: http://www.cleoconference.org/Conference_Program/symposia.aspx

• Conference Registration: http://www.cleoconference.org/registration

Press Registration
A Press Room for credentialed press and analysts will be located on-site in the Baltimore Convention Center, Sunday, May 1 – Thursday, May 5. Media interested in attending the conference should register online at http://www.cleoconference.org/media_center/mediaregistrationform.aspx or contact Angela Stark at 202.416.1443, astark@osa.org.
About CLEO
With a distinguished history as the industry's leading event on laser science, the Conference on Lasers and Electro-Optics (CLEO) and the Quantum Electronics Laser Science Conference (QELS) is where laser technology was first introduced. CLEO: 2011 will unite the field of lasers and electro-optics by bringing together all aspects of laser technology, with content stemming from basic research to industry application. Sponsored by the American Physical Society's (APS) Laser Science Division, the Institute of Electronic Engineers (IEEE) Photonics Society and the Optical Society (OSA), CLEO: 2011 provides the full range of critical developments in the field, showcasing the most significant milestones from laboratory to marketplace. With an unparalleled breadth and depth of coverage, CLEO: 2011 connects all of the critical vertical markets in lasers and electro-optics. For more information, visit the conference's website at www.cleoconference.org.

Angela Stark | Newswise Science News
Further information:
http://www.osa.org

More articles from Physics and Astronomy:

nachricht Water without windows: Capturing water vapor inside an electron microscope
13.12.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Columbia engineers create artificial graphene in a nanofabricated semiconductor structure
13.12.2017 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>