Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flashes in the sky

05.07.2013
Mysterious bursts of radio waves have been detected that appear to have originated from billions of light years away. They have left scientists pondering what may have caused them.

An international team of researchers including scientists from the Max Planck Institute for Radio Astronomy in Bonn could rule out any terrestrial origin for the four discovered fast radio bursts. Their brightness and distance estimates indicate that the bursts originated at cosmological distances, when the Universe was just 6 to 9 billion years old. The emission process for these bursts is not known yet.


The CSIRO Parkes radio telescope, which has been used to confirm a population of Fast Radio Bursts, is shown superimposed on an image the distribution of gas in our Galaxy. An artist's impression of a single fast radio burst is shown located well away from the Galactic plane emission. Fast radio bursts are a new population of radio source located at cosmological distances.
Swinburne Astronomy Productions, with CSIRO Parkes radio telescope and astronomy.fas.harvard.edu/skymaps/halpha (background image).


Radio map of the whole sky in Galactic coordinates, with pulsars found within the High Time Resolution Universe Survey (HTRU) project marked as black dots. The positions of the newly detected four Fast Radio Bursts (FRBs) are marked as red asterisks. MPIfR/C. Ng

The results are published in the current issue of “Science” (Science Online, July 05, 2013).

Four Fast Radio Bursts or FRBs with durations of only a few milliseconds were detected at high Galactic latitudes in the southern sky.

The extremely short duration of the bursts and the inferred great distance imply that they have been caused by some cataclysmic cosmological event, such as two merging neutron stars or a star dying or being swallowed by a black hole.

The results point to some of the most extreme events in astrophysics involving large amounts of mass or energy as the source of the radio bursts. “A single burst of radio emission of unknown origin was detected outside our galaxy about six years ago but no one was certain what it was or even if it was real, so we have spent the last four years searching for more of these explosive, short-duration radio bursts”, says Dan Thornton, the University of Manchester and Commonwealth Scientific and Industrial Research Organisation PhD student who led the study. “This paper describes four more bursts, removing any doubt that they are real. And the furthest one we detected after a light travelling time of about 8 billion years.”

Astonishingly the findings, which were taken from a tiny fraction of the sky, also suggest that there should be one of these signals going off every 10 seconds anywhere in the sky. “The bursts last only a tenth of the blink of an eye. With current telescopes we need to be lucky to look at the right spot at the right time,” explains Michael Kramer, Director at Max Planck Institute for Radio Astronomy (MPIfR) in Bonn and Professor at Manchester University. “But if we could view the sky systematically with “radio eyes” there would be flashes going off all over the sky every day.”

The team used the CSIRO Parkes 64metre radio telescope to obtain their results.
Swinburne's Professor Matthew Bailes thinks the most likely source of the bursts are cataclysmic explosions in the Universe's most magnetic neutron stars otherwise known as magnetars. "Magnetars can give off more energy in a millisecond than our Sun does in 300,000 years and are a leading candidate for the bursts", he says.

The researchers say their results will also provide a way of finding out the properties of space where the bursts occurred.

“We are still not sure about what makes up the space between galaxies”, says Dr Ben Stappers from Manchester’s School of Physics and Astronomy. “So we will be able to use these radio bursts like probes in order to understand more about some of the missing matter in the Universe.”

“Now we are starting to use other telescopes like our large Effelsberg 100m radio telescope to extend this research to the whole sky”, adds Dr David Champion from MPIfR. “We would like to look for the bursts in real time. Future telescopes like the Square Kilometre Array could cover even larger areas of the sky in order to detect many more of these bursts”, he concludes.

The research team includes scientists from the University of Manchester’s Jodrell Bank Observatory/United Kingdom, the Max Planck Institute for Radio Astronomy, Bonn/Germany, the Cagliari University and Observatory, Sardinia/Italy, Swinburne University of Technology, Melbourne, the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Sydney/Australia, the Australian Research Council Centre of Excellence for All-Sky Astrophysics (CAASTRO), and the NASA Jet Propulsion Laboratory, California/U.S.A.

Original Publication:

Results are published as “A population of fast radio bursts at cosmological distances” (D. Thornton, B. Stappers, M. Bailes, B. Barsdell, S. Bates, N. D. R. Bhat, M. Burgay, S. Burke-Spolaor, D. Champion, P. Coster, N. D'Amico, A. Jameson, S. Johnston, M. Keith, M. Kramer, L. Levin, S. Milia, C. Ng, A. Possenti, & W. van Straten), in the current issue of “Science” Vol. 340, Issue 6141 (July 05, 2013)

Local Contact:

Prof. Dr. Michael Kramer,
Director and Head of Research Group „Fundamental Physics in Radio Astronomy“
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49-228-525-278
E-mail: mkramer@mpifr-bonn.mpg.de
Dr. David Champion,
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49-228-525-315
E-mail: champion@mpifr-bonn.mpg.de
Dr. Norbert Junkes,
Press and Public Outreach
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49 228 525-399
Email: njunkes@mpifr-bonn.mpg.de

Norbert Junkes | Max-Planck-Institut
Further information:
http://www3.mpifr-bonn.mpg.de/public/pr/pr-science-jul2013-en.html

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>