Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flashes in the sky

05.07.2013
Mysterious bursts of radio waves have been detected that appear to have originated from billions of light years away. They have left scientists pondering what may have caused them.

An international team of researchers including scientists from the Max Planck Institute for Radio Astronomy in Bonn could rule out any terrestrial origin for the four discovered fast radio bursts. Their brightness and distance estimates indicate that the bursts originated at cosmological distances, when the Universe was just 6 to 9 billion years old. The emission process for these bursts is not known yet.


The CSIRO Parkes radio telescope, which has been used to confirm a population of Fast Radio Bursts, is shown superimposed on an image the distribution of gas in our Galaxy. An artist's impression of a single fast radio burst is shown located well away from the Galactic plane emission. Fast radio bursts are a new population of radio source located at cosmological distances.
Swinburne Astronomy Productions, with CSIRO Parkes radio telescope and astronomy.fas.harvard.edu/skymaps/halpha (background image).


Radio map of the whole sky in Galactic coordinates, with pulsars found within the High Time Resolution Universe Survey (HTRU) project marked as black dots. The positions of the newly detected four Fast Radio Bursts (FRBs) are marked as red asterisks. MPIfR/C. Ng

The results are published in the current issue of “Science” (Science Online, July 05, 2013).

Four Fast Radio Bursts or FRBs with durations of only a few milliseconds were detected at high Galactic latitudes in the southern sky.

The extremely short duration of the bursts and the inferred great distance imply that they have been caused by some cataclysmic cosmological event, such as two merging neutron stars or a star dying or being swallowed by a black hole.

The results point to some of the most extreme events in astrophysics involving large amounts of mass or energy as the source of the radio bursts. “A single burst of radio emission of unknown origin was detected outside our galaxy about six years ago but no one was certain what it was or even if it was real, so we have spent the last four years searching for more of these explosive, short-duration radio bursts”, says Dan Thornton, the University of Manchester and Commonwealth Scientific and Industrial Research Organisation PhD student who led the study. “This paper describes four more bursts, removing any doubt that they are real. And the furthest one we detected after a light travelling time of about 8 billion years.”

Astonishingly the findings, which were taken from a tiny fraction of the sky, also suggest that there should be one of these signals going off every 10 seconds anywhere in the sky. “The bursts last only a tenth of the blink of an eye. With current telescopes we need to be lucky to look at the right spot at the right time,” explains Michael Kramer, Director at Max Planck Institute for Radio Astronomy (MPIfR) in Bonn and Professor at Manchester University. “But if we could view the sky systematically with “radio eyes” there would be flashes going off all over the sky every day.”

The team used the CSIRO Parkes 64metre radio telescope to obtain their results.
Swinburne's Professor Matthew Bailes thinks the most likely source of the bursts are cataclysmic explosions in the Universe's most magnetic neutron stars otherwise known as magnetars. "Magnetars can give off more energy in a millisecond than our Sun does in 300,000 years and are a leading candidate for the bursts", he says.

The researchers say their results will also provide a way of finding out the properties of space where the bursts occurred.

“We are still not sure about what makes up the space between galaxies”, says Dr Ben Stappers from Manchester’s School of Physics and Astronomy. “So we will be able to use these radio bursts like probes in order to understand more about some of the missing matter in the Universe.”

“Now we are starting to use other telescopes like our large Effelsberg 100m radio telescope to extend this research to the whole sky”, adds Dr David Champion from MPIfR. “We would like to look for the bursts in real time. Future telescopes like the Square Kilometre Array could cover even larger areas of the sky in order to detect many more of these bursts”, he concludes.

The research team includes scientists from the University of Manchester’s Jodrell Bank Observatory/United Kingdom, the Max Planck Institute for Radio Astronomy, Bonn/Germany, the Cagliari University and Observatory, Sardinia/Italy, Swinburne University of Technology, Melbourne, the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Sydney/Australia, the Australian Research Council Centre of Excellence for All-Sky Astrophysics (CAASTRO), and the NASA Jet Propulsion Laboratory, California/U.S.A.

Original Publication:

Results are published as “A population of fast radio bursts at cosmological distances” (D. Thornton, B. Stappers, M. Bailes, B. Barsdell, S. Bates, N. D. R. Bhat, M. Burgay, S. Burke-Spolaor, D. Champion, P. Coster, N. D'Amico, A. Jameson, S. Johnston, M. Keith, M. Kramer, L. Levin, S. Milia, C. Ng, A. Possenti, & W. van Straten), in the current issue of “Science” Vol. 340, Issue 6141 (July 05, 2013)

Local Contact:

Prof. Dr. Michael Kramer,
Director and Head of Research Group „Fundamental Physics in Radio Astronomy“
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49-228-525-278
E-mail: mkramer@mpifr-bonn.mpg.de
Dr. David Champion,
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49-228-525-315
E-mail: champion@mpifr-bonn.mpg.de
Dr. Norbert Junkes,
Press and Public Outreach
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49 228 525-399
Email: njunkes@mpifr-bonn.mpg.de

Norbert Junkes | Max-Planck-Institut
Further information:
http://www3.mpifr-bonn.mpg.de/public/pr/pr-science-jul2013-en.html

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>