Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Flashes in the sky

Mysterious bursts of radio waves have been detected that appear to have originated from billions of light years away. They have left scientists pondering what may have caused them.

An international team of researchers including scientists from the Max Planck Institute for Radio Astronomy in Bonn could rule out any terrestrial origin for the four discovered fast radio bursts. Their brightness and distance estimates indicate that the bursts originated at cosmological distances, when the Universe was just 6 to 9 billion years old. The emission process for these bursts is not known yet.

The CSIRO Parkes radio telescope, which has been used to confirm a population of Fast Radio Bursts, is shown superimposed on an image the distribution of gas in our Galaxy. An artist's impression of a single fast radio burst is shown located well away from the Galactic plane emission. Fast radio bursts are a new population of radio source located at cosmological distances.
Swinburne Astronomy Productions, with CSIRO Parkes radio telescope and (background image).

Radio map of the whole sky in Galactic coordinates, with pulsars found within the High Time Resolution Universe Survey (HTRU) project marked as black dots. The positions of the newly detected four Fast Radio Bursts (FRBs) are marked as red asterisks. MPIfR/C. Ng

The results are published in the current issue of “Science” (Science Online, July 05, 2013).

Four Fast Radio Bursts or FRBs with durations of only a few milliseconds were detected at high Galactic latitudes in the southern sky.

The extremely short duration of the bursts and the inferred great distance imply that they have been caused by some cataclysmic cosmological event, such as two merging neutron stars or a star dying or being swallowed by a black hole.

The results point to some of the most extreme events in astrophysics involving large amounts of mass or energy as the source of the radio bursts. “A single burst of radio emission of unknown origin was detected outside our galaxy about six years ago but no one was certain what it was or even if it was real, so we have spent the last four years searching for more of these explosive, short-duration radio bursts”, says Dan Thornton, the University of Manchester and Commonwealth Scientific and Industrial Research Organisation PhD student who led the study. “This paper describes four more bursts, removing any doubt that they are real. And the furthest one we detected after a light travelling time of about 8 billion years.”

Astonishingly the findings, which were taken from a tiny fraction of the sky, also suggest that there should be one of these signals going off every 10 seconds anywhere in the sky. “The bursts last only a tenth of the blink of an eye. With current telescopes we need to be lucky to look at the right spot at the right time,” explains Michael Kramer, Director at Max Planck Institute for Radio Astronomy (MPIfR) in Bonn and Professor at Manchester University. “But if we could view the sky systematically with “radio eyes” there would be flashes going off all over the sky every day.”

The team used the CSIRO Parkes 64metre radio telescope to obtain their results.
Swinburne's Professor Matthew Bailes thinks the most likely source of the bursts are cataclysmic explosions in the Universe's most magnetic neutron stars otherwise known as magnetars. "Magnetars can give off more energy in a millisecond than our Sun does in 300,000 years and are a leading candidate for the bursts", he says.

The researchers say their results will also provide a way of finding out the properties of space where the bursts occurred.

“We are still not sure about what makes up the space between galaxies”, says Dr Ben Stappers from Manchester’s School of Physics and Astronomy. “So we will be able to use these radio bursts like probes in order to understand more about some of the missing matter in the Universe.”

“Now we are starting to use other telescopes like our large Effelsberg 100m radio telescope to extend this research to the whole sky”, adds Dr David Champion from MPIfR. “We would like to look for the bursts in real time. Future telescopes like the Square Kilometre Array could cover even larger areas of the sky in order to detect many more of these bursts”, he concludes.

The research team includes scientists from the University of Manchester’s Jodrell Bank Observatory/United Kingdom, the Max Planck Institute for Radio Astronomy, Bonn/Germany, the Cagliari University and Observatory, Sardinia/Italy, Swinburne University of Technology, Melbourne, the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Sydney/Australia, the Australian Research Council Centre of Excellence for All-Sky Astrophysics (CAASTRO), and the NASA Jet Propulsion Laboratory, California/U.S.A.

Original Publication:

Results are published as “A population of fast radio bursts at cosmological distances” (D. Thornton, B. Stappers, M. Bailes, B. Barsdell, S. Bates, N. D. R. Bhat, M. Burgay, S. Burke-Spolaor, D. Champion, P. Coster, N. D'Amico, A. Jameson, S. Johnston, M. Keith, M. Kramer, L. Levin, S. Milia, C. Ng, A. Possenti, & W. van Straten), in the current issue of “Science” Vol. 340, Issue 6141 (July 05, 2013)

Local Contact:

Prof. Dr. Michael Kramer,
Director and Head of Research Group „Fundamental Physics in Radio Astronomy“
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49-228-525-278
Dr. David Champion,
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49-228-525-315
Dr. Norbert Junkes,
Press and Public Outreach
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49 228 525-399

Norbert Junkes | Max-Planck-Institut
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Custom sequences for polymers using visible light

22.03.2018 | Materials Sciences

Scientists develop tiny tooth-mounted sensors that can track what you eat

22.03.2018 | Health and Medicine

Mat baits, hooks and destroys pollutants in water

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>