Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eye of Gaia: billion-pixel camera to map Milky Way

07.07.2011
The largest digital camera ever built for a space mission has been painstakingly mosaicked together from 106 separate electronic detectors. The resulting “billion-pixel array” will serve as the super-sensitive ‘eye’ of ESA’s Galaxy-mapping Gaia mission.

While the naked human eye can see several thousand stars on a clear night, Gaia will map a billion stars within our own Milky Way Galaxy and its neighbours over the course of its five-year mission from 2013, charting their brightness and spectral characteristics along with their three-dimensional positions and motions.

In order to detect distant stars up to a million times fainter than the eye can see, Gaia will carry 106 charge coupled devices (CCDs), advanced versions of chips within standard digital cameras.

Developed for the mission by e2v Technologies of Chelmsford, UK, these rectangular detectors are a little smaller than a credit card, each one measuring 4.7x6 cm but thinner than a human hair.

The 0.5x1.0 m mosaic has been assembled at the Toulouse facility of Gaia prime contractor Astrium France.

Technicians spent much of May carefully fitting together each CCD package on the support structure, leaving only a 1 mm gap between them. Working in double shifts in strict cleanroom conditions, they added an average four CCDs per day, finally completing their task on 1 June.

“The mounting and precise alignment of the 106 CCDs is a key step in the assembly of the flight model focal plane assembly,” said Philippe Garé, ESA’s Gaia payload manager.

The completed mosaic is arranged in seven rows of CCDs. The main array comprises 102 detectors dedicated to star detection. Four others check the image quality of each telescope and the stability of the 106.5º angle between the two telescopes that Gaia uses to obtain stereo views of stars.

In order to increase the sensitivity of its detectors, the spacecraft will maintain their temperature of –110ºC.

Gaia’s CCD support structure, like much of the rest of the spacecraft, is made of silicon carbide – a ceramic like material, extraordinarily resistant to deforming under temperature changes.

First synthesised as a diamond substitute, SiC has the advantage of low weight: the entire support structure with its detectors is only 20 kg.

Gaia will operate at the Earth–Sun L2 Lagrange point, 1,5 million kilometers behind the earth, when looking from the sun, where Earth’s orbital motion balances out gravitational forces to form a stable point in space. As the spinning Gaia’s two telescopes sweep across the sky, the images of stars in each field of view will move across the focal plane array, divided into four fields variously dedicated to star mapping, position and motion, colour and intensity and spectrometry.

Scheduled for launch in 2013, Gaia’s three-dimensional star map will help to reveal the composition, formation and evolution of the Milky Way, sampling 1% of our Galaxy’s stars.

Gaia should also sample large numbers of other celestial bodies, from minor bodies in our own Solar System to more distant galaxies and quasars near the edge of the observable Universe.

Markus Bauer | EurekAlert!
Further information:
http://www.esa.int
http://www.esa.int/export/esaSC/SEMQ9V6TLPG_index_0.html

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>