Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eye of Gaia: billion-pixel camera to map Milky Way

07.07.2011
The largest digital camera ever built for a space mission has been painstakingly mosaicked together from 106 separate electronic detectors. The resulting “billion-pixel array” will serve as the super-sensitive ‘eye’ of ESA’s Galaxy-mapping Gaia mission.

While the naked human eye can see several thousand stars on a clear night, Gaia will map a billion stars within our own Milky Way Galaxy and its neighbours over the course of its five-year mission from 2013, charting their brightness and spectral characteristics along with their three-dimensional positions and motions.

In order to detect distant stars up to a million times fainter than the eye can see, Gaia will carry 106 charge coupled devices (CCDs), advanced versions of chips within standard digital cameras.

Developed for the mission by e2v Technologies of Chelmsford, UK, these rectangular detectors are a little smaller than a credit card, each one measuring 4.7x6 cm but thinner than a human hair.

The 0.5x1.0 m mosaic has been assembled at the Toulouse facility of Gaia prime contractor Astrium France.

Technicians spent much of May carefully fitting together each CCD package on the support structure, leaving only a 1 mm gap between them. Working in double shifts in strict cleanroom conditions, they added an average four CCDs per day, finally completing their task on 1 June.

“The mounting and precise alignment of the 106 CCDs is a key step in the assembly of the flight model focal plane assembly,” said Philippe Garé, ESA’s Gaia payload manager.

The completed mosaic is arranged in seven rows of CCDs. The main array comprises 102 detectors dedicated to star detection. Four others check the image quality of each telescope and the stability of the 106.5º angle between the two telescopes that Gaia uses to obtain stereo views of stars.

In order to increase the sensitivity of its detectors, the spacecraft will maintain their temperature of –110ºC.

Gaia’s CCD support structure, like much of the rest of the spacecraft, is made of silicon carbide – a ceramic like material, extraordinarily resistant to deforming under temperature changes.

First synthesised as a diamond substitute, SiC has the advantage of low weight: the entire support structure with its detectors is only 20 kg.

Gaia will operate at the Earth–Sun L2 Lagrange point, 1,5 million kilometers behind the earth, when looking from the sun, where Earth’s orbital motion balances out gravitational forces to form a stable point in space. As the spinning Gaia’s two telescopes sweep across the sky, the images of stars in each field of view will move across the focal plane array, divided into four fields variously dedicated to star mapping, position and motion, colour and intensity and spectrometry.

Scheduled for launch in 2013, Gaia’s three-dimensional star map will help to reveal the composition, formation and evolution of the Milky Way, sampling 1% of our Galaxy’s stars.

Gaia should also sample large numbers of other celestial bodies, from minor bodies in our own Solar System to more distant galaxies and quasars near the edge of the observable Universe.

Markus Bauer | EurekAlert!
Further information:
http://www.esa.int
http://www.esa.int/export/esaSC/SEMQ9V6TLPG_index_0.html

More articles from Physics and Astronomy:

nachricht NASA's James Webb Space Telescope completes final cryogenic testing
21.11.2017 | NASA/Goddard Space Flight Center

nachricht Previous evidence of water on mars now identified as grainflows
21.11.2017 | US Geological Survey

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>