Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extreme darkness: Carbon nanotube forest covers NIST's ultra-dark detector

19.08.2010
Harnessing darkness for practical use, researchers at the National Institute of Standards and Technology (NIST) have developed a laser power detector coated with the world's darkest material‑a forest of carbon nanotubes that reflects almost no light across the visible and part of the infrared spectrum.

NIST will use the new ultra-dark detector, described in a new paper in Nano Letters,* to make precision laser power measurements for advanced technologies such as optical communications, laser-based manufacturing, solar energy conversion, and industrial and satellite-borne sensors.

Inspired by a 2008 paper by Rensselaer Polytechnic Institute (RPI) on "the darkest man-made material ever,"** the NIST team used a sparse array of fine nanotubes as a coating for a thermal detector, a device used to measure laser power. A co-author at Stony Brook University in New York grew the nanotube coating. The coating absorbs laser light and converts it to heat, which is registered in pyroelectric material (lithium tantalate in this case). The rise in temperature generates a current, which is measured to determine the power of the laser. The blacker the coating, the more efficiently it absorbs light instead of reflecting it, and the more accurate the measurements.

The new NIST detector uniformly reflects less than 0.1 percent of light at wavelengths from deep violet at 400 nanometers (nm) to near infrared at 4 micrometers (ìm) and less than 1 percent of light in the infrared spectrum from 4 to 14 ìm. The results are similar to those reported for the RPI material and in a 2009 paper by a Japanese group. The NIST work is unique in that the nanotubes were grown on pyroelectric material, whereas the other groups grew them on silicon. NIST researchers plan to extend the calibrated operating range of their device to 50 or even 100 micrometer wavelengths, to perhaps provide a standard for terahertz radiation power.

... more about:
»Carbon »Letters »NIST »Nano »RPI »optical communication

NIST previously made detector coatings from a variety of materials, including flat nanotube mats. The new coating is a vertical forest of multiwalled nanotubes, each less than 10 nanometers in diameter and about 160 micrometers long. The deep hollows may help trap light, and the random pattern diffuses any reflected light in various directions. Measuring how much light was reflected across a broad spectrum was technically demanding; the NIST team spent hundreds of hours using five different methods to measure the vanishingly low reflectance with adequate precision. Three of the five methods involved comparisons of the nanotube-coated detector to a calibrated standard.

Carbon nanotubes offer ideal properties for thermal detector coatings, in part because they are efficient heat conductors. Nickel phosphorous, for example, reflects less light at some wavelengths, but does not conduct heat as well. The new carbon nanotube materials also are darker than NIST's various Standard Reference Materials for black color developed years ago to calibrate instruments.

* J. Lehman, A. Sanders, L. Hanssen, B. Wilthan and J. Zeng. 2010. A Very Black Infrared Detector from Vertically Aligned Carbon Nanotubes and Electric-field Poling of Lithium Tantalate. Nano Letters. Posted online Aug. 3, 2010.

** Z.P. Yang, L. Ci, J.A. Bur, S.Y. Lin and P.M. Ajayan. Experimental observation of an extremely dark material made by a low-density nanotube array. Nano Letters. Vol. 8, No. 2, 446-451.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

Further reports about: Carbon Letters NIST Nano RPI optical communication

More articles from Physics and Astronomy:

nachricht Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials
17.01.2018 | Universität des Saarlandes

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>