Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Explosive growth of young star

04.12.2013
A star is formed when a large cloud of gas and dust condenses and eventually becomes so dense that it collapses into a ball of gas, where the pressure heats the matter, creating a glowing gas ball – a star is born.

New research from the Niels Bohr Institute, among others, shows that a young, newly formed star in the Milky Way had such an explosive growth, that it was initially about 100 times brighter than it is now. The results are published in the scientific journal, Astrophysical Journal Letters.


The picture shows the young protostar in the center surrounded by the gas and dust cloud. The red color shows the organic molecule, methanol, for which the radiation is concentrated close to the center. The blue color shows the HCO+ molecule with a clear extended ring-structure. The inner yellow ring is an indication where the temperature is 100 degrees above the absolute zero (-173 C) with the current luminosity of the star while the outer yellow ring shows where this temperature was reached when the star was a hundred times brighter.

Credit: (Credit: Jes Jørgensen (Niels Bohr Institute).

The young star was formed within the past 100,000 years in our own galaxy, the Milky Way. Using the large international telescope, the Atacama Large Millimeter Array (ALMA) in northern Chile, an international research team led by Jes Jørgensen from the Niels Bohr Institute studied the star and its surroundings.

"We studied the chemistry of the gas and dust cloud surrounding the early protostar (an early stage of star formation). In this dense cloud, a chemical reaction takes place that enables the formation of several kinds of complex molecules, including methanol. One would expect that all of the molecules would be near the star, but with one of them we saw a clear ring structure. Something had removed a certain molecule, HCO+, from a wide area around the protostar, explains astrophysicist Jes Jørgensen, Associate Professor at the Niels

Bohr Institute and the Centre for Star and Planet Formation at the University of Copenhagen, Denmark. He explains that what is special about the HCO+ molecule is that it is particularly sensitive to water vapour. Even small amounts of water vapour dissolve the molecule and the absence of HCO+ molecule can be used to discover what happened during the star formation process.

Violent eruption of light and heat

At first, the gas and dust cloud is extremely cold and simple molecules such as carbon monoxide and water settle on the grains of dust and solidify into ice. Here, where the molecules are close to each other, they bond together to form more complex molecules like methanol, ethanol, simple sugars, etc. and water in the form of ice. The gravity of the early protostar attracts much of the surrounding gas and dust cloud and when the material falls close to the young star, it slows down and the energy is converted into heat. This heat melts the ice, which turns into water vapour.

"From the area where the HCO+ molecule has been dissolved by water vapour we can now calculate how bright the young star has been. It turns out that that the area is much greater than expected compared to the star's current brightness. The protostar has been up 100 times brighter than the star is now. From the chemistry we can also say that this change happened within the last 100-1000 years – that is to say, very recently from an astronomical point of view," explains Jes Jørgensen.

Such an eruption of hot brightness can also explain the content of condensed methanol and the high content of molecules with carbon, as found in the gas cloud. This could also have a great influence on the chemical processes that lead to the formation of complex organic molecules that can later be incorporated into planetary systems. Jes Jørgensen believes that there has not only been a single burst of light and heat radiation, but that it could happen several times during the formation process.

"One of the major questions if we take a long view, is whether this is a common phenomenon – whether all young stars undergo similar 'eruptions' and if so, how often," wonders Jes Jørgensen, who as a scientist is always on the hunt to solve more of the mysteries of the universe.

For more information contact:

Jes Jørgensen, astrophysicist, Associate Professor at the Niels Bohr Institute and the Centre for Star and Planet Formation at the University of Copenhagen. +45 4250-9970, jeskj@nbi.dk

Gertie Skaarup | EurekAlert!
Further information:
http://www.nbi.dk

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>