Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European Research Agencies Create Sustainable Entity for Astroparticle Physics

04.12.2012
European funding agencies for astroparticle physics celebrate today the successful work of the ASPERA European funded network and the launch of the newly founded APPEC, the Astroparticle Physics European Consortium.
Over the last six years, ASPERA brought together funding agencies and the physics community to set up coordination for astroparticle physics at the European level. The main achievement of ASPERA is the development of the European strategy for astroparticle physics defining the priority large infrastructures needed to solve some of the deepest mysteries of the Universe. ASPERA also developed activities stimulating the field such as R&D common calls and created closer relationships to Industry and other research fields.

APPEC will now take over and aims at developing a European common action plan to fund the upcoming large astroparticle physics infrastructures as defined in the ASPERA Roadmap. 10 countries already joined the new APPEC consortium and 9 additional countries are following the accession process. APPEC’s activities will be organised through three functional centers located at DESY in Hamburg - Germany, APC laboratory of CNRS/CEA in Paris – France and INFN national underground laboratory in Gran Sasso – Italy.

The meeting was the opportunity for the very first General Assembly of APPEC during which Stavros Katsanevas from CNRS – France was elected as its Chairman, and Thomas Berghoefer from DESY – Germany was elected as its General Secretary.

“I’m very honored to have been elected to chair the new APPEC consortium. APPEC’s focus will be to enhance European collaboration and coordination in funding to strengthen astroparticle physics in Europe and keep the leading role of Europe in understanding the secrets of the Universe”, Stavros Katsanevas said.

“ASPERA was really a great success leading to the new APPEC structure. Implementing our large astroparticle physics infrastructures is a big challenge and it is a very good sign that 10 countries already joined to make a bright future possible.” Thomas Berghoefer said.

What is the nature of dark matter and of dark energy? Where do cosmic rays come from? What is the view of the sky at extreme energies? What is the role of neutrinos in cosmic evolution? Can we detect gravitational waves? To answer such kinds of questions, astroparticle physics develops specially designed particle detectors, telescopes and experiments at the frontier of astrophysics, particle physics and cosmology.

Website: www.aspera-eu.org

Contact:
ASPERA press officer - CERN
Arnaud Marsollier
arnaud.marsollier@cern.ch
+41 22 767 37 09

Available pictures for press: http://s.aspera-eu.org/PressPictures

* Note for editors:

APPEC is the Astroparticle Physics European Consortium. It comprises 10 countries represented by their Ministries, funding agencies or their designated institution: Belgium (FWO), Croatia (HRZZ), France (CEA, CNRS), Germany (DESY), Ireland (RIA), Italy (INFN), The Netherlands (FOM), Poland (NCN), Romania (IFIN), UK (STFC).

ASPERA, the AStroParticle European Research Area is a network of European national funding agencies responsible for astroparticle physics. ASPERA is funded by the European Commission as an ERA­NET. ASPERA comprises currently 23 national funding agencies in 19 countries, and CERN European Organization.

Arnaud Marsollier | Newswise Science News
Further information:
http://www.cern.ch
http://www.aspera-eu.org

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>