Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European Research Agencies Create Sustainable Entity for Astroparticle Physics

04.12.2012
European funding agencies for astroparticle physics celebrate today the successful work of the ASPERA European funded network and the launch of the newly founded APPEC, the Astroparticle Physics European Consortium.
Over the last six years, ASPERA brought together funding agencies and the physics community to set up coordination for astroparticle physics at the European level. The main achievement of ASPERA is the development of the European strategy for astroparticle physics defining the priority large infrastructures needed to solve some of the deepest mysteries of the Universe. ASPERA also developed activities stimulating the field such as R&D common calls and created closer relationships to Industry and other research fields.

APPEC will now take over and aims at developing a European common action plan to fund the upcoming large astroparticle physics infrastructures as defined in the ASPERA Roadmap. 10 countries already joined the new APPEC consortium and 9 additional countries are following the accession process. APPEC’s activities will be organised through three functional centers located at DESY in Hamburg - Germany, APC laboratory of CNRS/CEA in Paris – France and INFN national underground laboratory in Gran Sasso – Italy.

The meeting was the opportunity for the very first General Assembly of APPEC during which Stavros Katsanevas from CNRS – France was elected as its Chairman, and Thomas Berghoefer from DESY – Germany was elected as its General Secretary.

“I’m very honored to have been elected to chair the new APPEC consortium. APPEC’s focus will be to enhance European collaboration and coordination in funding to strengthen astroparticle physics in Europe and keep the leading role of Europe in understanding the secrets of the Universe”, Stavros Katsanevas said.

“ASPERA was really a great success leading to the new APPEC structure. Implementing our large astroparticle physics infrastructures is a big challenge and it is a very good sign that 10 countries already joined to make a bright future possible.” Thomas Berghoefer said.

What is the nature of dark matter and of dark energy? Where do cosmic rays come from? What is the view of the sky at extreme energies? What is the role of neutrinos in cosmic evolution? Can we detect gravitational waves? To answer such kinds of questions, astroparticle physics develops specially designed particle detectors, telescopes and experiments at the frontier of astrophysics, particle physics and cosmology.

Website: www.aspera-eu.org

Contact:
ASPERA press officer - CERN
Arnaud Marsollier
arnaud.marsollier@cern.ch
+41 22 767 37 09

Available pictures for press: http://s.aspera-eu.org/PressPictures

* Note for editors:

APPEC is the Astroparticle Physics European Consortium. It comprises 10 countries represented by their Ministries, funding agencies or their designated institution: Belgium (FWO), Croatia (HRZZ), France (CEA, CNRS), Germany (DESY), Ireland (RIA), Italy (INFN), The Netherlands (FOM), Poland (NCN), Romania (IFIN), UK (STFC).

ASPERA, the AStroParticle European Research Area is a network of European national funding agencies responsible for astroparticle physics. ASPERA is funded by the European Commission as an ERA­NET. ASPERA comprises currently 23 national funding agencies in 19 countries, and CERN European Organization.

Arnaud Marsollier | Newswise Science News
Further information:
http://www.cern.ch
http://www.aspera-eu.org

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>