Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An effective solution to the lack of directionality of some lasers

13.01.2009
Terahertz cascade lasers (1) are a new family of semi-conductor lasers which emit in the frequency range of the terahertz, or 1012 hertz. Because of their potential applications, they currently raise considerable interest, despite one major drawback: their output beam is markedly divergent.

To solve this problem, a French-English collaboration (2) led by Raffaele Colombelli, researcher at CNRS, has used special microscopic components called photonic crystals. In combination with the laser, the team was able to control the laser beam and considerably restrict its divergence. Published on January 8 in the journal Nature, this finding opens the way to a large number of promising applications, for instance in the field of terahertz medical imaging.

Situated in the far infrared range of the electromagnetic spectrum, between mid-infrared and microwaves, terahertz waves have some major advantages: they can penetrate through skin, clothing, paper, wood, card and plastic. These properties offer applications in medical imaging, spectroscopy, and environmental detection (detection of biological agents, pollutants etc.). .

Terahertz cascade laser systems raise considerable interest due to their numerous advantages: they are compact (3), they use electrical energy -- reference is made to electrically "pumped" lasers (4) - and they operate in the terahertz range of the electromagnetic spectrum (THz). Indeed, the generation of radiation in the frequency range between 1 and 10 THz (also called the THz "gap") with a compact device has proven extremely challenging. This explains the considerable interest raised by terahertz cascade lasers, which are the only compact sources (smaller than a millimeter) operating within this range of frequencies. However, these promising lasers have one weakness: the marked divergence of their output beam, which prevents their widespread use.

The scientists used very small structures, photonic crystals, to influence the optical properties of the material and thus enable control over the light trajectory. By combining these components with the terahertz laser, they managed to design an ingenious system that emits terahertz waves but also, and above all, enables precise control of the laser beam. Thanks to this effective technology, this beam now diverges very little.

This novel system opens up numerous fundamental and applied perspectives. It is now necessary for the researchers to maximize the output power of these lasers. Furthermore, better control of the photonic crystal technology may enable the design of new terahertz lasers of an even smaller size. The technique thus developed could be generalized to other lasers operating in different ranges of wavelengths. Finally, these results may give rise to several applications, notably in the fields of spectroscopy and THz imaging.

This work was made possible by the EURYI award given in 2004 to Raffaele Colombelli by the European Science Foundation. This allowed him to set up a research team within the Institut d'électronique fondamentale at the Faculty of Sciences in Orsay, where he is supervising the doctoral thesis of Yannick Chassagneux, the lead author of this publication.

(1) The first terahertz quantum cascade laser was invented in 2002.

(2) Belonging to two units: the Institut d'électronique fondamentale
(CNRS / Université Paris-Sud 11) and the laboratory "Matériaux et
phénomènes quantiques" (CNRS / Université Paris Diderot -- Paris 7) and
to the Universities of Cambridge and Leeds.
(3) This is a characteristic of semi-conductor lasers, which take up
little space (unlike gas lasers).
(4) The alternative is a laser with an optical pump, but a second laser
is necessary to supply energy.

Julien Guillaume | alfa
Further information:
http://www.cnrs.fr

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>