Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Earth-sized planets found

21.12.2011
Astronomers using NASA's Kepler mission have detected two Earth-sized planets orbiting a distant star. This discovery marks a milestone in the hunt for alien worlds, since it brings scientists one step closer to their ultimate goal of finding a twin Earth.

"The goal of Kepler is to find Earth-sized planets in the habitable zone. Proving the existence of Earth-sized exoplanets is a major step toward achieving that goal," said Francois Fressin of the Harvard-Smithsonian Center for Astrophysics (CfA).


The first two Earth-sized exoplanets found by Kepler are shown here in comparison to Earth and Venus. Kepler-20e has a diameter of 6,900 miles, meaning it is 0.87 times the size of Earth and 0.92 times the size of Venus. Kepler-20f has a diameter of 8,200 miles, meaning it is only 3 percent larger than Earth. They are part of a five-planet system orbiting the star Kepler-20. All five would fit within the orbit of Mercury in our solar system. Credit: NASA/JPL-Caltech/T. Pyle

The paper describing the finding will be published in the journal Nature.

The two planets, dubbed Kepler-20e and 20f, are the smallest planets found to date. They have diameters of 6,900 miles and 8,200 miles - equivalent to 0.87 times Earth (slightly smaller than Venus) and 1.03 times Earth. These worlds are expected to have rocky compositions, so their masses should be less than 1.7 and 3 times Earth's.

Both worlds circle Kepler-20: a G-type star slightly cooler than the Sun and located 950 light-years from Earth. (It would take the space shuttle 36 million years to travel to Kepler-20.)

Kepler-20e orbits every 6.1 days at a distance of 4.7 million miles. Kepler-20f orbits every 19.6 days at a distance of 10.3 million miles. Due to their tight orbits, they are heated to temperatures of 1,400 degrees Fahrenheit and 800 degrees F.

In addition to the two Earth-sized worlds, the Kepler-20 system contains three larger planets. All five have orbits closer than Mercury in our solar system.

They also show an unexpected arrangement. In our solar system small, rocky worlds orbit close to the Sun and large, gas giant worlds orbit farther out. In contrast, the planets of Kepler-20 are organized in alternating size: big, little, big, little, big.

"We were surprised to find this system of flip-flopping planets," said co-author David Charbonneau of the CfA. "It's very different than our solar system."

The three largest planets are designated Kepler-20b, 20c, and 20d. They have diameters of 15,000, 24,600, and 22,000 miles and orbit once every 3.7, 10.9, and 77.6 days, respectively. Kepler-20b has 8.7 times the mass of Earth; Kepler-20c has 16.1 times Earth's mass. Kepler-20d weighs less than 20 times Earth.

The planets of Kepler-20 could not have formed in their current locations. Instead, they must have formed farther from their star and then migrated inward, probably through interactions with the disk of material from which they all formed. This allowed the worlds to maintain their regular spacing despite alternating sizes.

Kepler identifies "objects of interest" by looking for stars that dim slightly, which can occur when a planet crosses the star's face. To confirm a transiting planet, astronomers look for the star to wobble as it is gravitationally tugged by its orbiting companion (a method known as radial velocity).

The radial velocity signal for planets weighing one to a few Earth masses is too small to detect with current technology. Therefore, other techniques must be used to validate that an object of interest is truly a planet.

A variety of situations could mimic the dimming from a transiting planet. For example, an eclipsing binary-star system whose light blends with the star Kepler-20 would create a similar signal. To rule out such imposters, the team simulated millions of possible scenarios with Blender - custom software developed by Fressin and Willie Torres of CfA. They concluded that the odds are strongly in favor of Kepler-20e and 20f being planets.

Fressin and Torres also used Blender to confirm the existence of Kepler-22b, a planet in the habitable zone of its star that was announced by NASA earlier this month. However, that world was much larger than Earth.

"These new planets are significantly smaller than any planet found up till now orbiting a Sun-like star," added Fressin.

Christine Pulliam | EurekAlert!
Further information:
http://www.cfa.harvard.edu

More articles from Physics and Astronomy:

nachricht ‘Find the Lady’ in the quantum world
17.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht A single photon reveals quantum entanglement of 16 million atoms
16.10.2017 | Université de Genève

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

‘Find the Lady’ in the quantum world

17.10.2017 | Physics and Astronomy

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>