Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early results from the world's brightest X-ray source

23.06.2010
SLAC's Linac Coherent Light Source probes nitrogen molecules

The SLAC linear collider in Menlo Park, California has already made a name for itself as one of the world's largest and most prolific particle accelerator facilities dedicated to high energy particle physics. It is now beginning a new life as a source of x-rays a billion times brighter than any other research x-ray source to date. Early results that reveal how molecules respond to intense radiation from the facility's Linac Coherent Light Source (LCLS) are set to be published this week in the journal Physical Review Letters.

The early LCLS research takes advantage of the machine's bright, brief flash to study how x-rays strip electrons from molecules built of pairs of nitrogen atoms. Once the electrons are removed, the nitrogen atoms strongly repel each other, and the molecule rapidly blows apart. But in addition to being very bright, the x-ray pulses from the LCLS can be made extremely brief, which allows researchers to capture data from the molecule before it disintegrates. The result is the x-ray equivalent of a flash bulb that freezes the action in a photograph. Unlike photographic flashes that are thousandths of a second in duration, however, flashes from the LCLS are measured in femtoseconds, which are a millionth of a billionth of a second long.

In some of the first published results to emerge from the LCLS, the researchers report that nitrogen molecules absorb less x-ray radiation when illuminated with shorter flashes compared to longer ones. In addition to helping develop a model for x-ray absorption in molecules, the results show that the LCLS will likely be able to provide snapshots of never-before-seen, ultra-fast chemical and molecular processes, including those involving the biomolecules that are critical components in living cells.

A Synopsis describing the first published results from LCLS is available through the APS Physics website (physics.aps.org).

About APS Physics:

APS Physics (http://physics.aps.org) publishes expert written commentaries and highlights of papers appearing in the journals of the American Physical Society.

James Riordon | EurekAlert!
Further information:
http://www.aps.org

Further reports about: APS Coherent LCLS Physic X-ray microscopy living cell molecular process nitrogen atom

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>