Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Look but don't touch

13.05.2013
ICFO researchers present a non-destructive technique for measuring at the atomic scale

Improving our understanding of the human brain, gathering insights into the origin of our universe through the detection of gravitational waves, or optimizing the precision of GPS systems- all are difficult challenges to master because they require the ability to visualize highly fragile elements, which can be terminally damaged by any attempt to observe them. Now, quantum physics has provided a solution.

In an article published in Nature Photonics, researchers at the Institute of Photonic Sciences (ICFO) report the observation of a highly fragile and volatile body through a new quantum-mechanical measurement technique.

Researchers from the group led by Morgan Mitchell applied the so-called "quantum non-demolition measurement" to a tiny cloud of atoms. They were able to observe the spinning of the electrons in the atoms, and more importantly, the atom cloud was not disturbed in the process. It is the first time quantum non-demolition measurement has been demonstrated with any material object. The same method could be extended to permit the observation of individual atoms.

In the experiment, scientists prepared light pulses with photons in complementary states, and then sent them through the cloud of atoms, measuring their polarization on the way out. "A first measurement gives us information reflecting the action of the first light pulse. A second measurement, taken with photons in a complementary state from the first, cancels the influence of the preliminary pulse, allowing us to observe the original characteristics of the object," explains Dr. Robert Sewell, researcher at ICFO. This process has enabled the team to gather precise information on the magnetic field of the atom's surroundings.

The information obtained exceeds the so-called "standard quantum limit", which quantifies the maximum amount of information obtainable with any traditional probing. Two achievements made this possible. On one hand, researchers were able to structure the observation so that the noise resulting from the visualization was shifted away from the object being measured and into a different variable. In addition, they introduced quantum statistical correlations among the atoms so that they were able to gather in one measurement what previously they needed a collection of measurements to observe. "This experiment provides rigorous proof of the effectiveness of quantum physics for measuring delicate objects" concludes Sewell.

Link to the paper: http://dx.doi.org/10.1038/NPHOTON.2013.100

About ICFO:

ICFO-The Institute of Photonic Sciences conducts research targeting the forefront of the science and technology of light, with programs directed at applications in Health, Renewable Energies, Information Technologies, Security and Industrial processes, among others. The center hosts 250 researchers working in 60 different laboratories. All research groups and facilities are located in a dedicated 14.000 m2 building situated in the Mediterranean Technology Park in the metropolitan area of Barcelona.

Albert Mundet | EurekAlert!
Further information:
http://www.icfo.eu

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>