Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Look but don't touch

13.05.2013
ICFO researchers present a non-destructive technique for measuring at the atomic scale

Improving our understanding of the human brain, gathering insights into the origin of our universe through the detection of gravitational waves, or optimizing the precision of GPS systems- all are difficult challenges to master because they require the ability to visualize highly fragile elements, which can be terminally damaged by any attempt to observe them. Now, quantum physics has provided a solution.

In an article published in Nature Photonics, researchers at the Institute of Photonic Sciences (ICFO) report the observation of a highly fragile and volatile body through a new quantum-mechanical measurement technique.

Researchers from the group led by Morgan Mitchell applied the so-called "quantum non-demolition measurement" to a tiny cloud of atoms. They were able to observe the spinning of the electrons in the atoms, and more importantly, the atom cloud was not disturbed in the process. It is the first time quantum non-demolition measurement has been demonstrated with any material object. The same method could be extended to permit the observation of individual atoms.

In the experiment, scientists prepared light pulses with photons in complementary states, and then sent them through the cloud of atoms, measuring their polarization on the way out. "A first measurement gives us information reflecting the action of the first light pulse. A second measurement, taken with photons in a complementary state from the first, cancels the influence of the preliminary pulse, allowing us to observe the original characteristics of the object," explains Dr. Robert Sewell, researcher at ICFO. This process has enabled the team to gather precise information on the magnetic field of the atom's surroundings.

The information obtained exceeds the so-called "standard quantum limit", which quantifies the maximum amount of information obtainable with any traditional probing. Two achievements made this possible. On one hand, researchers were able to structure the observation so that the noise resulting from the visualization was shifted away from the object being measured and into a different variable. In addition, they introduced quantum statistical correlations among the atoms so that they were able to gather in one measurement what previously they needed a collection of measurements to observe. "This experiment provides rigorous proof of the effectiveness of quantum physics for measuring delicate objects" concludes Sewell.

Link to the paper: http://dx.doi.org/10.1038/NPHOTON.2013.100

About ICFO:

ICFO-The Institute of Photonic Sciences conducts research targeting the forefront of the science and technology of light, with programs directed at applications in Health, Renewable Energies, Information Technologies, Security and Industrial processes, among others. The center hosts 250 researchers working in 60 different laboratories. All research groups and facilities are located in a dedicated 14.000 m2 building situated in the Mediterranean Technology Park in the metropolitan area of Barcelona.

Albert Mundet | EurekAlert!
Further information:
http://www.icfo.eu

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>