Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diagnosis Just a Breath Away with New Laser

03.02.2014
University of Adelaide physics researchers have developed a new type of laser that will enable exciting new advances in areas as diverse as breath analysis for disease diagnosis and remote sensing of critical greenhouse gases.

Published in the journal Optics Letters, the researchers from the University’s Institute for Photonics and Advanced Sensing and the School of Chemistry and Physics describe how they have been able to produce 25 times more light emission than other lasers operating at a similar wavelength – opening the way for detection of very low concentrations of gases.

“This laser has significantly more power and is much more efficient than other lasers operating in this frequency range,” says Ori Henderson-Sapir, PhD researcher. “Using a novel approach, we’ve been able to overcome the significant technical hurdles that have prevented fibre lasers from producing sufficient power in the mid-infrared.”

The new laser operates in the mid-infrared frequency range – the same wavelength band where many important hydrocarbon gases absorb light.

“Probing this region of the electromagnetic spectrum, with the high power we’ve achieved, means we will be able to detect these gases with a high degree of sensitivity,” says Project Leader Dr David Ottaway. “For instance, it should enable the possibility of analysing trace gases in exhaled breath in the doctors’ surgery.”

Research has shown that with various diseases, minute amounts of gases not normally exhaled can be detected in the breath; for example, acetone can be detected in the breath when someone has diabetes.

Other potential applications include detection in the atmosphere of methane and ethane which are important gases in global warming.

“The main limitation to date with laser detection of these gases has been the lack of suitable light sources that can produce enough energy in this part of the spectrum,” says Dr Ottaway. “The few available sources are generally expensive and bulky and, therefore, not suitable for widespread use.”

The new laser uses an optical fibre which is easier to work with, less bulky and more portable, and much more cost effective to produce than other types of laser.

The researchers, who also include Jesper Munch, Emeritus Professor of Experimental Physics, reported light emission at 3.6 microns – the deepest mid-infrared emission from a fibre laser operating at room temperature. They have also shown that the laser has the promise of efficient emission across a large wavelength spectrum from 3.3-3.8 micron.

“This means it has incredible potential for scanning for a range of gases with a high level of sensitivity, with great promise as a very useful diagnostic and sensing tool,” says Dr Ottaway.

This research was supported by the State Government through the Premiers Science Research Foundation (PSRF).

Media Contact:
Dr David Ottaway
Senior Lecturer, School of Chemistry & Physics
Institute for Photonics & Advanced Sensing
The University of Adelaide
Phone: +61 8 8313 5165
Mobile: +61 430 325 099
david.ottaway@adelaide.edu.au
Mr Ori Henderson-Sapir
PhD Candidate
School of Chemistry & Physics
Institute for Photonics & Advanced Sensing
The University of Adelaide
Mobile: +61 403 119 776
ori.henderson-sapir@adelaide.edu.au

Robyn Mills | Newswise
Further information:
http://www.adelaide.edu.au

More articles from Physics and Astronomy:

nachricht Introducing the disposable laser
04.05.2016 | American Institute of Physics

nachricht New fabrication and thermo-optical tuning of whispering gallery microlasers
04.05.2016 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

Introducing the disposable laser

04.05.2016 | Physics and Astronomy

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>