Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diagnosis Just a Breath Away with New Laser

03.02.2014
University of Adelaide physics researchers have developed a new type of laser that will enable exciting new advances in areas as diverse as breath analysis for disease diagnosis and remote sensing of critical greenhouse gases.

Published in the journal Optics Letters, the researchers from the University’s Institute for Photonics and Advanced Sensing and the School of Chemistry and Physics describe how they have been able to produce 25 times more light emission than other lasers operating at a similar wavelength – opening the way for detection of very low concentrations of gases.

“This laser has significantly more power and is much more efficient than other lasers operating in this frequency range,” says Ori Henderson-Sapir, PhD researcher. “Using a novel approach, we’ve been able to overcome the significant technical hurdles that have prevented fibre lasers from producing sufficient power in the mid-infrared.”

The new laser operates in the mid-infrared frequency range – the same wavelength band where many important hydrocarbon gases absorb light.

“Probing this region of the electromagnetic spectrum, with the high power we’ve achieved, means we will be able to detect these gases with a high degree of sensitivity,” says Project Leader Dr David Ottaway. “For instance, it should enable the possibility of analysing trace gases in exhaled breath in the doctors’ surgery.”

Research has shown that with various diseases, minute amounts of gases not normally exhaled can be detected in the breath; for example, acetone can be detected in the breath when someone has diabetes.

Other potential applications include detection in the atmosphere of methane and ethane which are important gases in global warming.

“The main limitation to date with laser detection of these gases has been the lack of suitable light sources that can produce enough energy in this part of the spectrum,” says Dr Ottaway. “The few available sources are generally expensive and bulky and, therefore, not suitable for widespread use.”

The new laser uses an optical fibre which is easier to work with, less bulky and more portable, and much more cost effective to produce than other types of laser.

The researchers, who also include Jesper Munch, Emeritus Professor of Experimental Physics, reported light emission at 3.6 microns – the deepest mid-infrared emission from a fibre laser operating at room temperature. They have also shown that the laser has the promise of efficient emission across a large wavelength spectrum from 3.3-3.8 micron.

“This means it has incredible potential for scanning for a range of gases with a high level of sensitivity, with great promise as a very useful diagnostic and sensing tool,” says Dr Ottaway.

This research was supported by the State Government through the Premiers Science Research Foundation (PSRF).

Media Contact:
Dr David Ottaway
Senior Lecturer, School of Chemistry & Physics
Institute for Photonics & Advanced Sensing
The University of Adelaide
Phone: +61 8 8313 5165
Mobile: +61 430 325 099
david.ottaway@adelaide.edu.au
Mr Ori Henderson-Sapir
PhD Candidate
School of Chemistry & Physics
Institute for Photonics & Advanced Sensing
The University of Adelaide
Mobile: +61 403 119 776
ori.henderson-sapir@adelaide.edu.au

Robyn Mills | Newswise
Further information:
http://www.adelaide.edu.au

More articles from Physics and Astronomy:

nachricht Cassiopeia's hidden gem: The closest rocky, transiting planet
04.08.2015 | Harvard-Smithsonian Center for Astrophysics

nachricht Quantum States in a Nano-object Manipulated using a Mechanical System
04.08.2015 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greenhouse gases' millennia-long ocean legacy

Continuing current carbon dioxide (CO2) emission trends throughout this century and beyond would leave a legacy of heat and acidity in the deep ocean. These...

Im Focus: Glaciers melt faster than ever

Glacier decline in the first decade of the 21st century has reached a historical record, since the onset of direct observations. Glacier melt is a global phenomenon and will continue even without further climate change. This is shown in the latest study by the World Glacier Monitoring Service under the lead of the University of Zurich, Switzerland.

The World Glacier Monitoring Service, domiciled at the University of Zurich, has compiled worldwide data on glacier changes for more than 120 years. Together...

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Success 4.0 – Is Your Company Fit for the Future? New Series of Events for Executives

04.08.2015 | Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

 
Latest News

Small tilt in magnets makes them viable memory chips

04.08.2015 | Information Technology

New Design Brings World’s First Solar Battery to Performance Milestone

04.08.2015 | Power and Electrical Engineering

Magnetism at Nanoscale

04.08.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>