Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detector at the South Pole explores the mysterious neutrinos

16.04.2015

Neutrinos are a type of particle that pass through just about everything in their path from even the most distant regions of the universe. The Earth is constantly bombarded by billions of neutrinos, which zip right through the entire globe, houses, animals, people - everything.

Only very rarely do they react with matter, but the giant IceCube experiment at the South Pole can detect when there is a collision between neutrinos and atoms in the ice using a network of detectors. New research results from the Niels Bohr Institute among others have measured the neutrinos at the South Pole and have calculated some of the physical properties of the otherwise exotic and poorly understood particles. The results are published in the scientific journal Physical Review D.


Jason Koskinen is shown at the South Pole. In the background is the IceCube Lab. All data from the instruments deep down in the ice comes up through the two "towers" and into the computer center, where the first analyses are done.

Credit: T. Waldemaier

Neutrinos are among nature's most abundant particles. Their number far exceeds the number of atoms in the entire universe - yet we know little about them. Neutrinos are a type of particle created in the Big Bang and are also produced in the Sun's interior and in violent events like supernovae, which are exploding stars. Neutrinos are also called 'ghost particles' because they basically do not interact with matter, but pass undisturbed through everything in their path.

Instruments at the South Pole

Researchers from 44 institutions in 12 countries are part of an international project, IceCube at the South Pole to study the mysterious particles with the strange properties.

IceCube is an enormous particle detector located deep in the ice at the South Pole. The instruments in the detector are comprised of 86 cables each with 60 digital Optical Modules (extremely sensitive light sensors). Each cable is lowered down into a hole, which is melted through the 2½ km ice sheer using a hot water drill. The detector is located deep below the surface - it starts 1½ km below the ice and ends at the bottom at a depth of 2½ km.

The detector's enormous size of a cubic kilometer is necessary because neutrinos interact extremely weakly with matter, so it is only rarely that they collide with the atoms in the ice. When they finally collide, charged particles are created, which emit radiation that can be detected by the extremely sensitive Digital Optical Modules.

"In the Ice Cube project we have registered about 35 neutrinos, which are very likely to have come distant regions in space. They have a very high energy and because they have not interacted during their long journey, they can carry information from the most distant parts of the universe. In addition to the rare cosmic neutrinos, we are also studying the neutrinos created in the Earth's atmosphere in order to unravel the physical properties of neutrinos," says Jason Koskinen, Assistant Professor and head of the IceCube Group at the Niels Bohr Institute, University of Copenhagen.

From the North Pole to the South Pole

When particles (protons) with high energy - from violent events in the cosmos like supernovae and quasars hit the Earth's atmosphere, a burst of neutrinos is formed, which passes through the Earth. The neutrinos formed over the North Pole pass straight through the Earth and very small proportion of them hit the ice at the South Pole, where the IceCube detector registers the collisions.

Neutrinos are very light particles and for many years it was believed that they were completely massless. It is now believed that there are three types of neutrinos (electron, muon and tau neutrinos), each with their specific mass, which is incredibly small - less than a millionth of the mass of an electron.

"The neutrinos created in the atmosphere over the North Pole are mostly muon neutrinos. On their way through the Earth's 13,000 km, the muon neutrinos undergo quantum fluctuations that can change them into another type of neutrino, tau neutrinos, before they are finally detected by IceCube on the other side of the globe. We can now study these effects in much greater detail than before and in this way we can gain new insights into their physical characteristics," explains Jason Koskinen.

Atmospheric neutrinos

The research group has now studied atmospheric neutrinos in the IceCube detector at the South Pole for three years and have analysed 5,200 interactions between atmospheric neutrinos and atoms in the ice.

"We have confirmed that neutrinos undergo fluctuations - even at high energy levels and we have calculated how much they exhibit these oscillations. In this study, we have only measured muon neutrinos and in comparison to how many muon neutrinos form in in the atmosphere and pass through the Earth, we only see a fraction at the South Pole. The explanation is that the muon neutrinos undergo quantum fluctuations that change them into tau neutrinos and we do not see those. If they had not changed, we would see them all. Our calculations show that 20 percent have undergone quantum fluctuations and changed from muon neutrinos to another type of neutrino as they pass through the Earth," explains Jason Koskinen.

Messengers from the universe

And then what, you might ask? "Because we basically want to learn more about these strange particles that are everywhere in the universe and whose properties we still do not fully understand. Because neutrinos come from the cosmos, we could use them for astronomical observations and gain new insights into the structure of the universe," says Jason Koskinen.

###

Article: http://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.072004

Contact:

Jason Koskinen, Assistant Professor and head of the IceCube Group at the Niels Bohr Institute, University of Copenhagen, +45 2128-9061, koskinen@nbi.ku.dk

Morten Medici, PhD student, IceCube Group at the Niels Bohr Institute, University of Copenhagen, +45 3532-5454, +45 6151-6464, mmedici@nbi.ku.dk

Gertie Skaarup | EurekAlert!

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>