Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to deflect asteroids and save the Earth

20.04.2009
You may want to thank David French in advance. Because, in the event that a comet or asteroid comes hurtling toward Earth, he may be the guy responsible for saving the entire planet.

French, a doctoral candidate in aerospace engineering at North Carolina State University, has determined a way to effectively divert asteroids and other threatening objects from impacting Earth by attaching a long tether and ballast to the incoming object. By attaching the ballast, French explains, "you change the object's center of mass, effectively changing the object's orbit and allowing it to pass by the Earth, rather than impacting it."

Sound far-fetched? NASA's Near Earth Object Program has identified more than 1,000 "potentially hazardous asteroids" and they are finding more all the time. "While none of these objects is currently projected to hit Earth in the near future, slight changes in the orbits of these bodies, which could be caused by the gravitational pull of other objects, push from the solar wind, or some other effect could cause an intersection," French explains.

So French, and NC State Associate Professor of Mechanical and Aerospace Engineering Andre Mazzoleni, studied whether an asteroid-tether-ballast system could effectively alter the motion of an asteroid to ensure it missed hitting Earth. The answer? Yes.

"It's hard to imagine the scale of both the problem and the potential solutions," French says. "The Earth has been hit by objects from space many times before, so we know how bad the effects could be. For example, about 65 million years ago, a very large asteroid is thought to have hit the Earth in the southern Gulf of Mexico, wiping out the dinosaurs, and, in 1907, a very small airburst of a comet over Siberia flattened a forest over an area equal in size to New York City. The scale of our solution is similarly hard to imagine.

"Using a tether somewhere between 1,000 kilometers (roughly the distance from Raleigh to Miami) to 100,000 kilometers (you could wrap this around the Earth two and a half times) to divert an asteroid sounds extreme. But compare it to other schemes," French says, "They are all pretty far out. Other schemes include: a call for painting the asteroids in order to alter how light may influence their orbit; a plan that would guide a second asteroid into the threatening one; and of course, there are nukes. Nuclear weapons are an intriguing possibility, but have considerable political and technical obstacles. Would the rest of the world trust us to nuke an asteroid? Would we trust anyone else? And would the asteroid break into multiple asteroids, giving us more problems to solve?"

The research was first presented last month at the NC State Graduate Student Research Symposium in Raleigh, N.C. The research, "Trajectory Diversion of an Earth-Threatening Asteroid via Elastic, Massive Tether-Ballast System," has also been reviewed and accepted for presentation this September at the American Institute of Aeronautics and Astronautics SPACE 2009 Conference and Exposition in Pasadena, CA.

Matt Shipman | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>