Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CU-Boulder space scientists set for second spacecraft flyby of Mercury

01.10.2008
NASA's MESSENGER spacecraft, which is toting an $8.7 million University of Colorado at Boulder instrument to measure Mercury's wispy atmosphere and blistering surface, will make its second flyby of the mysterious, rocky planet Oct. 6.

Traveling at a mind-blowing 4.2 miles per second, the spacecraft will dip within 124 miles of Mercury and image much of the surface never before seen by spacecraft.

As MESSENGER pulls away from the planet it will view a region seen at high resolution only once before -- when NASA's Mariner 10 spacecraft made three flybys in 1974 and 1975, said Senior Research Associate William McClintock, a mission co-investigator from CU-Boulder's Laboratory for Atmospheric and Space Physics.

Launched in August 2004, MESSENGER will make the last of three passes by Mercury -- the closest planet to the sun -- in October 2009 before finally settling into orbit around it in 2011. The circuitous, 4.9 billion-mile-journey to Mercury requires more than six years and 15 loops around the sun to guide it closer to Mercury's orbit. McClintock led the development of CU-Boulder's Mercury Atmospheric and Surface Composition Spectrometer, or MASCS, miniaturized to weigh less than seven pounds for the arduous journey.

The craft is equipped with a large sunshade and heat-resistant ceramic fabric to protect it from the sun, and more than half of the weight of the 1.2-ton spacecraft at launch consisted of propellant and helium. "We are almost two-thirds of the way there, but we still have a lot of work to do," said McClintock. "We are continually refining our game plan, including developing contingencies for the unexpected."

The desk-sized MESSENGER spacecraft is carrying seven instruments -- a camera, a magnetometer, an altimeter and four spectrometers. Data from MASCS earlier this year during the first flyby Jan. 14 provided LASP researchers with evidence that about 10 percent of the sodium atoms ejected from Mercury's hot surface during the daytime were accelerated into a 25,000-mile-long sodium tail trailing the planet, McClintock said.

MESSENGER will take data and images from Mercury for about 90 minutes on Oct. 6, when LASP will turn on a detector in MASCS for its first look at Mercury's surface in the far ultraviolet portion of the light spectrum, said McClintock. The scanner will look at reflected light from Mercury's surface to better determine the mineral composition of the planet.

"We got some surprising results with our UV detector in January, and we hope to see additional surprises as we extend our observations further into the ultraviolet," he said.

The second Mercury flyby is slated for 2:40 a.m. MDT on Oct. 6. LASP Director Daniel Baker, also a co-investigator on the MESSENGER mission, is using data from the mission to study Mercury's magnetic field and its interaction with the solar wind. Mark Lankton is the LASP program manager for the MASCS instrument.

William McClintock | EurekAlert!
Further information:
http://www.colorado.edu
http://messenger.jhuapl.edu
http://lasp.colorado.edu

More articles from Physics and Astronomy:

nachricht Squeezing light at the nanoscale
17.06.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht The Fraunhofer IAF is a »Landmark in the Land of Ideas«
15.06.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>