Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cosmic Jets of Young Stars Formed by Magnetic Fields

17.10.2014

Astrophysical jets are counted among our Universe’s most spectacular phenomena: From the centers of black holes, quasars, or protostars, these rays of matter sometimes protrude several light years into space.

Now, for the first time ever, an international team of researchers has successfully tested a new model that explains how magnetic fields form these emissions in young stars. Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) were part of this research. Their findings have been published in the journal Science. The insights gleaned from this research may even apply to cancer therapy.


An artist's rendering showing the birth of a star: A dust and gas cloud is forming a spiraling disk around a massive baby star while jets of material shoot from its core.

ESO/L. Calada

Whenever an object in space forms a rotating disc of matter, chances are that it gives rise to a “jet” – a thin, straight emission of matter which emanates from the disc’s center and that looks like a spintop. These structures can be observed especially during the formation of new stars. But understanding how such thin beams are able to form within the disc is something that continues to elude scientists.

Now, HZDR researchers, along with their European, American, and Asian colleagues, have investigated this process in the lab. At LULI – the Laboratoire pour l'Utilisation des Lasers Intenses – in France, scientists hit a plastic sample with laser light which set the electrons at the target’s core in motion, transforming the solid plastic object into conductive plasma.

“Think of it as a sort of rapidly expanding hot cloud of electrons and ions. On a small scale, the plasma represents a young star’s accumulation of matter,” explains Professor Thomas Cowan, the study’s co-author and Director of the HZDR Institute of Radiation Physics.

Miniature versions of young stars for the lab

What made the experiment special was the fact that the plasma was exposed to a very powerful pulsed magnetic field. The idea behind it: under a magnetic field’s influence, the normally widely scattered plasma begins to focus, forming a hollow center. This ultimately produces a shockwave, from which a very thin beam starts to project – a jet.

The experiment was set up in such a way as to allow for extrapolation to conditions as they would be encountered in the Universe: within as little as 20 nanoseconds – over 100,000 times faster than a fly flapping its wings – the lab plasma forms structures similar to a young star’s jet in approximately six years. This allowed the researchers to test their model with astronomical observations, which were made possible through space telescopes, in the last two decades. The data were in good agreement.

In a jet, for instance, a crossing over of particle streams can occur, which in turn results in the formation of very hot spots. “X-ray measurements of actual jets show these features at the exact same points as our true-to-scale plasma model in the lab,” says Cowan. With its help, the researchers were able to offer a model that, for the first time ever, is capable of explaining the formation of jets solely by way of magnetic fields. Previous approaches had considered the rotation of matter about the young star another influencing factor.

The realization that plasma can be focused in this way may prove a real practical boon in the field of medical engineering. According to Cowan, it’s conceivable that with the help of pulsed magnetic fields, a particularly thin proton beam could be produced for use in radiation therapy. It’s what Florian Kroll, Ph.D. student at the HZDR and one of the study’s co-authors, is investigating.

Special pulse generator designed at the Dresden High Magnetic Field Lab

In order to produce strong pulsed magnetic fields for the experiment, the researchers drew on the expertise at the HZDR’s Dresden High Magnetic Field Lab: “We developed a special pulse generator which allowed our French colleagues to set up powerful magnetic fields within a small, enclosed lab space,” says Dr. Thomas Herrmannsdörfer, head of division at the High Magnetic Field Lab. The generator – just about the size of a wardrobe – is capable of generating currents of up to 300 kiloampere.

According to Herrmannsdörfer, building such a compact facility was a real technical challenge: “Our electrical engineers came up with some very innovative solutions. This is also helping us now with developing these types of generators for application in industry and medical technology.” Currently, the pulse generator is still located at the French laser lab at Palaiseau near Paris, because beginning in December the Dresden scientists are planning on once again working together with their LULI colleagues.

Publication: B. Albertazzi et al. (2014). Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field. Science, published online 17 October 2014. DOI: 10.1126/science.1259694

Further Information:
Prof. Dr. Thomas E. Cowan | Institute of Radiation Physics at HZDR
Phone: +49 351 260 - 2270 | Email: t.cowan@hzdr.de
Dr. Thomas Herrmannsdörfer | Dresden High Magnetic Field Laboratory at HZDR
Phone: +49 351 260 - 3320 | Email: t.herrmannsdoerfer@hzdr.de

Media Contact:
Christine Bohnet | Press Officer
Phone: +49 351 260 2450 | Mobile: +49 160 969 288 56 | c.bohnet@hzdr.de | www.hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden

The Helmholtz-Zentrum Dresden-Rossendorf (HZDR) conducts research in the sectors energy, health, and matter. It focuses its research on the following topics:
• How can energy and resources be used efficiently, safely, and sustainably?
• How can malignant tumors be visualized and characterized more precisely and treated effectively?
• How do matter and materials behave in strong fields and at the smallest dimensions?

To answer these scientific questions, several large-scale research facilities provide unique research opportunities. These facilities are also accessible to external users.
The HZDR has been a member of the Helmholtz Association, Germany’s largest research organization, since 2011. It has four locations in Dresden, Leipzig, Freiberg, and Grenoble and employs about 1,000 people – approx. 500 of whom are scientists including 150 doctoral candidates.

Weitere Informationen:

http://www.hzdr.de

Dr. Christine Bohnet | Helmholtz-Zentrum

Further reports about: Cosmic HZDR Helmholtz-Zentrum Magnetic formation magnetic field magnetic fields young stars

More articles from Physics and Astronomy:

nachricht Nanostructures taste the rainbow
29.06.2017 | California Institute of Technology

nachricht X-ray photoelectron spectroscopy under real ambient pressure conditions
28.06.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>