Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cosmic curiosity reveals ghostly glow of dead quasar

04.11.2010
While sorting through hundreds of galaxy images as part of the Galaxy Zoo citizen science project two years ago, Dutch schoolteacher and volunteer astronomer Hanny van Arkel stumbled upon a strange-looking object that baffled professional astronomers.

Two years later, a team led by Yale University researchers has discovered that the unique object represents a snapshot in time that reveals surprising clues about the life cycle of black holes.


The green Voorwerp in the foreground remains illuminated by light emitted up to 70,000 years ago by a quasar in the center of the background galaxy, which has since died out. Credit: WIYN/William Keel/Anna Manning

In a new study, the team has confirmed that the unusual object, known as Hanny's Voorwerp (Hanny's "object" in Dutch), is a large cloud of glowing gas illuminated by the light from a quasar—an extremely energetic galaxy with a supermassive black hole at its center.

The twist, described online in the Astrophysical Journal Letters, is that the quasar lighting up the gas has since burned out almost entirely, even though the light it emitted in the past continues to travel through space, illuminating the gas cloud and producing a sort of "light echo" of the dead quasar.

"This system really is like the Rosetta Stone of quasars," said Yale astronomer Kevin Schawinski, a co-founder of Galaxy Zoo and lead author of the study. "The amazing thing is that if it wasn't for the Voorwerp being illuminated nearby, the galaxy never would have piqued anyone's interest."

The team calculated that the light from the dead quasar, which is the nearest known galaxy to have hosted a quasar, took up to 70,000 years to travel through space and illuminate the Voorwerp—meaning the quasar must have shut down sometime within the past 70,000 years.

Until now, it was assumed that supermassive black holes took millions of years to die down after reaching their peak energy output. However, the Voorwerp suggests that the supermassive black holes that fuel quasars shut down much more quickly than previously thought. "This has huge implications for our understanding of how galaxies and black holes co-evolve," Schawinski said.

"The time scale on which quasars shut down their prodigious energy output is almost entirely unknown," said Meg Urry, director of the Yale Center for Astronomy & Astrophysics and a co-author of the paper. "That's why the Voorwerp is such an intriguing—and potentially critical—case study for understanding the end of black hole growth in quasars."

Although the galaxy no longer shines brightly in X-ray light as a quasar, it is still radiating at radio wavelengths. Whether this radio jet played a role in shutting down the central black hole is just one of several possibilities Schawinski and the team will investigate next.

"We've solved the mystery of the Voorwerp," he said. "But this discovery has raised a whole bunch of new questions."

Other authors of the paper include Shanil Virani, Priyamvada Natarajan, Paolo Coppi (all of Yale University); Daniel Evans (Massachusetts Institute of Technology, Harvard-Smithsonian Center for Astrophysics and Elon University); William Keel and Anna Manning (University of Alabama and Kitt Peak National Observatory); Chris Lintott (University of Oxford and Adler Planetarium); Sugata Kaviraj (University of Oxford and Imperial College London); Steven Bamford (University of Nottingham); Gyula Józsa (Netherlands Institute for Radio Astronomy and Argelander-Institut für Astronomie); Michael Garrett (Netherlands Institute for Radio Astronomy, Leiden Observatory and Swinburne University of Technology); Hanny van Arkel (Netherlands Institute for Radio Astronomy); Pamela Gay (Southern Illinois University Edwardsville); and Lucy Fortson (University of Minnesota).

Citation: Kevin Schawinski et al 2010 ApJ 724 L30 DOI: 10.1088/2041-8205/724/1/L30

Suzanne Taylor Muzzin | EurekAlert!
Further information:
http://www.yale.edu

More articles from Physics and Astronomy:

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>