Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cosmic accelerators discovered in our galaxy by UCLA physicists, Japanese colleague

18.08.2010
Physicists from UCLA and Japan have discovered evidence of "natural nuclear accelerators" at work in our Milky Way galaxy, based on an analysis of data from the world's largest cosmic ray detector.
The research is published Aug. 20 in the journal Physical Review Letters.

Cosmic rays of the highest energies were believed by physicists to come from remote galaxies containing enormous black holes capable of consuming stars and accelerating protons at energies comparable to that of a bullet shot from a rifle. These protons — referred to individually as "cosmic rays" — travel through space and eventually enter our galaxy.

But earlier this year, physicists using the Pierre Auger Observatory in Argentina, the world's largest cosmic ray observatory, published a surprising discovery: Many of the energetic cosmic rays found in the Milky Way are not actually protons but nuclei — and the higher the energy, the greater the nuclei-to-proton ratio.

"This finding was totally unexpected because the nuclei, more fragile than protons, tend to disintegrate into protons on their long journey through space," said Alexander Kusenko, UCLA professor of physics and astronomy and co-author of the Physical Review Letters research. "Moreover, it is very unlikely that a cosmic accelerator of any kind would accelerate nuclei better than protons at these high energies."

The resolution to the paradox of the nuclei's origin comes from an analysis by Kusenko; Antoine Calvez, a UCLA graduate student of physics who is part of Kusenko's research group; and Shigehiro Nagataki, an associate professor of physics at Japan's Kyoto University. They found that stellar explosions in our own galaxy can accelerate both protons and nuclei. But while the protons promptly leave the galaxy, the heavier and less mobile nuclei become trapped in the turbulent magnetic field and linger longer.

"As a result, the local density of nuclei is increased, and they bombard Earth in greater numbers, as seen by the Pierre Auger Observatory," said Kusenko, who is also a senior scientist at the University of Tokyo's Institute for Physics and Mathematics of the Universe (IPMU).

These ultra–high-energy nuclei have been trapped in the web of galactic magnetic fields for millions of years, and their arrival directions as they enter the Earth's atmosphere have been "completely randomized by numerous twists and turns in the tangled field," he said.

"When the data came out, they were so unexpected that many people started questioning the applicability of known laws of physics at high energy," Kusenko said. "The common lore has been that all ultra–high-energy cosmic rays must come from outside the galaxy. The lack of plausible sources and the arrival-direction anisotropy (the nuclei have different physical properties when measured in different directions) have been used as arguments in favor of extragalactic sources.

"However, since the cosmic rays in question turned out to be nuclei, the galactic field can randomize their arrival directions, taking care of the anisotropy puzzle. As for the plausible sources, the enormous stellar explosions responsible for gamma ray bursts can accelerate nuclei to high energies. When we put these two together, we knew we were on the right track. Then we calculated the spectra and the asymmetries, and both agreed with the data very well."

Kusenko hopes this research will enhance the understanding of "astrophysical archeology."

"We can study the collective effects of gamma ray bursts that have taken place in the past of our own galaxy over millions of years," he said.

Stellar explosions capable of accelerating particles to ultra-high energies have been seen in other galaxies, where they produce gamma-ray bursts. The new analysis provides evidence that such powerful explosions occur in our galaxy as well, at least a few times per million years, Kusenko said.

Kusenko and his colleagues predict that the protons escaping from other galaxies should still be seen at the highest energies and should point back to their sources, providing Pierre Auger Observatory with valuable data.

The Pierre Auger Observatory records cosmic ray showers through an array of 1,600 particle detectors placed about one mile apart in a grid spread across 1,200 square miles, complemented by specially designed telescopes. The observatory is named for the French physicist Pierre Victor Auger, who in the 1920s discovered air showers.

Kusenko's research was federally funded by the U.S. Department of Energy and NASA. Nagataki's research was funded by the Japan Society for the Promotion of Science.

For more information on Kusenko's research, visit www.physics.ucla.edu/~kusenko.

UCLA is California's largest university, with an enrollment of nearly 38,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer more than 323 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Five alumni and five faculty have been awarded the Nobel Prize.

Stuart Wolpert | EurekAlert!
Further information:
http://www.physics.ucla.edu/~kusenko
http://www.ucla.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>