Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cool electron acceleration

04.06.2013
Physicists from the Max-Planck-Institute of Quantum Optics produced electron pulses from a laser accelerator whose individual particles all have nearly the same, tuneable energy.

Electrons with a velocity close to the speed of light are hard to control. Using them as a tool for applications at the frontier of ultrafast physics requires them to be packed into extremely short pulses with tunable energy.


Figure caption: A laser pulse (red) hits helium atoms (blue), streaming from a nozzle with supersonic velocity. A very compact and controlled difference in density (dark blue ray) develops due to the partial obscuring of the nozzle by a razor blade. Precisely at this difference in density, the laser pulse hits the helium atoms, separates the electrons and accelerates them to nearly the speed of light. Since the electrons are all separated at the same location and same time from the atoms, they nearly gain the same energy. Figure: Thorsten Naeser

A team around Laboratory for Attosecond Physics (LAP) group leaders Dr. Laszlo Veisz and Prof. Stefan Karsch, both based at the Max-Planck-Institute of Quantum Optics (MPQ) has now achieved that feat by using a laser-driven accelerator. They created electron pulses with few-femtosecond duration, whose many individual particles all have nearly the same, but widely tunable energy.

These monochromatic electron pulses can be used to create ultrashort flashes of light in the extreme ultra-violet or even X-ray range, who in turn are a versatile tool for probing fast processes in the microcosm. (Physical Review Letters, May 02, 2013).

Bunches made up of electrons travelling close to the speed of light have a great potential in medicine or probing the microcosm, if their properties can be well controlled. Usually such pulses are provided by conventional radio-frequency (RF) accelerator systems, which are on one hand large and costly and on the other hand can only provide ultrashort particle bunches with even more costly tricks and great particle losses.

Accelerating particle bunches with a laser might become a viable workaround for these problems. Its main problem, however, has always been the difficulty of giving the same energy to all particles in a bunch, and hence creating “cool” bunches. Once this issue can be overcome, it would allow a much better control of the bunch properties and their adaptation to the application in mind.

A conventional RF-accelerator always contains a particle source defining the number of particles in a bunch, its pulse duration and energy width, and an acceleration section defining the final energy. In a laser accelerator, a defined particle source has been missing so far, and the electrons to accelerate were trapped randomly along the acceleration distance. This causes their energy distribution to become broad. The team around Laszlo Veisz and Stefan Karsch has now shown how to integrate a particle source into a laser accelerator and use it to create bunches whose individual particles all have nearly the same energy.

In the experiment, the physicists released helium atoms from a small nozzle at supersonic velocity. Directly above the nozzle they placed a razor blade such that it obscured a part of the nozzle orifice. After the supersonic helium stream is released from the nozzle and hits the razor blade edge its forms a shock front and hence a density step in the gas. At precisely that position the researchers focused an extremely strong laser pulse with a duration of 28 femtoseconds (One femtosecond is one millionth of a billionth of a second).

This laser pulse forms a plasma channel, i.e. it separates electron from their atoms, accelerates them close to the speed of light within a few 100 microns, and gives them all approximately the same energy. The salient point for the generation of a monochromatic electron pulse is the fact that all electrons start their journey at the shock position and therefore travel exactly the same acceleration distance until the end of the gas jet, and hence gain the same energy. Without the shock front, different electrons would start at a random position and gain different energy. “By changing the position of the razor blade above the nozzle we can determine where the density step is formed and hence how long the acceleration distance is, and what energy the electrons gain” explains Laszlo Veisz.
Perfectly controlled, ultrashort electron pulses can be used in turn to generate femtosecond flashes of light all the way down to the X-ray regime. They might be used to “shoot” images of fast processes in the microcosm. Medical applications are conceivable as well: Compact, cheap and well-controlled laser accelerators with high beam quality might disseminate new, dose-reduced X-ray imaging techniques to serve a large number of patients for diagnostic purposes. [Thorsten Naeser]

Original publication:
A. Buck, J. Wenz, J. Xu, K. Khrennikov, K. Schmid, M. Heigoldt, J. M. Mikhailova, M. Geissler, B. Shen, F. Krausz, S. Karsch, and L. Veisz

Shock-Front Injector for High-Quality Laser-Plasma Acceleration
Physical Review Letters, 2. Mai 2013,
Doi: 10.1103/PhysRevLett.110.185006

For more information, please contact:

Prof. Dr. Stefan Karsch
Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Str. 1, 85748 Garching
Phone: +49(0)89/32 905-323
E-mail: stefan.karsch@mpq.mpg.de

Dr. Laszlo Veisz
Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Str. 1, 85748 Garching
Phone: +49(0)89/32 905-233
E-mail: laszlo.veisz@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press- and Public Relations
Max-Planck-Institute of Quantum Optics, Garching
Phone: +49 (0)89 /32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>