Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Controlling Light With Sound: New Liquid Camera Lens as Simple as Water and Vibration

23.09.2008
New miniature image-capturing technology powered by water, sound, and surface tension could lead to smarter and lighter cameras in everything from cell phones and automobiles to autonomous robots and miniature spy planes.

Researchers at Rensselaer Polytechnic Institute have designed and tested an adaptive liquid lens that captures 250 pictures per second and requires considerably less energy to operate than competing technologies.

The lens is made up of a pair of water droplets, which vibrate back and forth upon exposure to a high-frequency sound, and in turn change the focus of the lens. By using imaging software to automatically capture in-focus frames and discard any out of focus frames, the researchers can create streaming images from lightweight, low-cost, high-fidelity miniature cameras.

“The lens is easy to manipulate, with very little energy, and it’s almost always in focus — no matter how close or far away it is from an object,” said project leader Amir H. Hirsa, professor and associate department head for graduate studies in the Department of Mechanical, Aerospace and Nuclear Engineering at Rensselaer. “There is no need for high voltages or other exotic activation mechanisms, which means this new lens may be used and integrated into any number of different applications and devices.”

Results of the study were detailed in the paper “Fast focusing using a pinned-contact oscillating liquid lens,” which was released online this week and will be the cover story of the October issue of the journal Nature Photonics. The issue also features an interview with Hirsa.

Most current methods for manipulating liquid lenses involve changing the size and shape of the area where the liquid contacts a surface, in order to bring an image into focus. This takes both time and valuable energy. Hirsa said a key feature of his new technique is that the water stays in constant, unchanging contact with the surface, thus requiring less energy to manipulate.

To do this, his new method couples two droplets of water through a cylindrical hole. When exposed to certain frequencies of sound, the device exploits inertia and water’s natural surface tension and becomes an oscillator, or something akin to a small pendulum: the water droplets resonate back and forth with great speed and a spring-like force. Researchers can control the rate of these oscillations by exposing the droplets to different sound frequencies.

By passing light through these droplets, the device is transformed into a miniature camera lens. As the water droplets move back and forth through the cylinder, the lens moves in and out of focus, depending on how close it is to the object. The images are captured electronically, and software can be used to automatically edit out any unfocused frames, leaving the user with a stream of clear, focused video.

“The great benefit of this new device is that you can create a new optical system from a liquid lens and a small speaker,” Hirsa said. “No one has done this before.”

The size of the droplets is the key to how fast they oscillate. Hirsa said that with small enough apertures and properly selected liquid volumes, he should be able to create a lens that oscillates as fast as 100,000 times per second — and still be able to effectively capture those images.

Hirsa says he anticipates interest in his new device from cell phone manufacturers, who are constantly seeking new ways to improve the performance of their devices and outpace their competitors in terms of lighter weight, more energy efficient phones. He also envisions small, lightweight, liquid lens cameras being integrated into a new generation of unmanned and micro air vehicles used for defense and homeland security applications.

Hirsa co-authored the paper with Carlos A. Lopez, who earned his doctorate at Rensselaer and now works for Intel Corp.’s research and development lab in Mexico. Hirsa and Lopez have filed a provisionary patent on this new technology.

Funding for the project was awarded by the U.S. National Science Foundation.

Michael Mullaney | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>