Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Controlling Light With Sound: New Liquid Camera Lens as Simple as Water and Vibration

23.09.2008
New miniature image-capturing technology powered by water, sound, and surface tension could lead to smarter and lighter cameras in everything from cell phones and automobiles to autonomous robots and miniature spy planes.

Researchers at Rensselaer Polytechnic Institute have designed and tested an adaptive liquid lens that captures 250 pictures per second and requires considerably less energy to operate than competing technologies.

The lens is made up of a pair of water droplets, which vibrate back and forth upon exposure to a high-frequency sound, and in turn change the focus of the lens. By using imaging software to automatically capture in-focus frames and discard any out of focus frames, the researchers can create streaming images from lightweight, low-cost, high-fidelity miniature cameras.

“The lens is easy to manipulate, with very little energy, and it’s almost always in focus — no matter how close or far away it is from an object,” said project leader Amir H. Hirsa, professor and associate department head for graduate studies in the Department of Mechanical, Aerospace and Nuclear Engineering at Rensselaer. “There is no need for high voltages or other exotic activation mechanisms, which means this new lens may be used and integrated into any number of different applications and devices.”

Results of the study were detailed in the paper “Fast focusing using a pinned-contact oscillating liquid lens,” which was released online this week and will be the cover story of the October issue of the journal Nature Photonics. The issue also features an interview with Hirsa.

Most current methods for manipulating liquid lenses involve changing the size and shape of the area where the liquid contacts a surface, in order to bring an image into focus. This takes both time and valuable energy. Hirsa said a key feature of his new technique is that the water stays in constant, unchanging contact with the surface, thus requiring less energy to manipulate.

To do this, his new method couples two droplets of water through a cylindrical hole. When exposed to certain frequencies of sound, the device exploits inertia and water’s natural surface tension and becomes an oscillator, or something akin to a small pendulum: the water droplets resonate back and forth with great speed and a spring-like force. Researchers can control the rate of these oscillations by exposing the droplets to different sound frequencies.

By passing light through these droplets, the device is transformed into a miniature camera lens. As the water droplets move back and forth through the cylinder, the lens moves in and out of focus, depending on how close it is to the object. The images are captured electronically, and software can be used to automatically edit out any unfocused frames, leaving the user with a stream of clear, focused video.

“The great benefit of this new device is that you can create a new optical system from a liquid lens and a small speaker,” Hirsa said. “No one has done this before.”

The size of the droplets is the key to how fast they oscillate. Hirsa said that with small enough apertures and properly selected liquid volumes, he should be able to create a lens that oscillates as fast as 100,000 times per second — and still be able to effectively capture those images.

Hirsa says he anticipates interest in his new device from cell phone manufacturers, who are constantly seeking new ways to improve the performance of their devices and outpace their competitors in terms of lighter weight, more energy efficient phones. He also envisions small, lightweight, liquid lens cameras being integrated into a new generation of unmanned and micro air vehicles used for defense and homeland security applications.

Hirsa co-authored the paper with Carlos A. Lopez, who earned his doctorate at Rensselaer and now works for Intel Corp.’s research and development lab in Mexico. Hirsa and Lopez have filed a provisionary patent on this new technology.

Funding for the project was awarded by the U.S. National Science Foundation.

Michael Mullaney | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>