Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compression experiments lead to shocking results

26.09.2011
Using acceleration 1 trillion times faster than a jet fighter in a maximum turn, researchers have gained new insight into dynamic compression of aluminum at ultrahigh strain rates.

Controlled shock compression has been used for decades to examine the behavior of materials under extreme conditions of pressure and temperature.

Using an ultrafast spectroscopic technique (used to track shocks on a time scale of ten trillionths of a second), Lawrence Livermore National Laboratory scientists Jonathan Crowhurst, Michael Armstrong, Kim Knight, Joseph Zaug and Elaine Behymer measured breakouts (driven by laser-induced shocks) in aluminum thin films with accelerations in the range of 10 trillion g's. The research appears in the Sept. 23 edition of the journal Physical Review Letters.

"The details of how solid materials rapidly deform on sub-micron-length scales have been the subject of speculation for decades," Armstrong said. "For the first time, our experiments can test fundamental scaling laws on time and length scales where they may start to break down at strain rates that are orders of magnitude larger than previously examined."

... more about:
»LLNL »Livermore »Security Forum

"In solids, a sufficiently large amplitude shock produces irreversible plastic deformation and relaxes the initial stress," Crowhurst said. "As the amplitude continues to increase, and if the shock drive is maintained, a steady-wave shock profile evolves, which propagates indefinitely without change in form."

But the team said that a fundamental understanding of shock-induced deformation is still lacking. In particular, little is understood about the behavior of materials, including metals, during the initial phase of shock compression and at high strain rates.

"Our original goal was not too ambitious," Crowhurst said. "We only wanted to show that measurements on ultrafast time scales could achieve consistency with longer time scale experiments. We did this, but then got a surprise - unexpected insight into shock wave phenomena."

The researchers measured shock rises in aluminum and obtained shock stresses, shock widths and strain rates. They used the information to test the validity, at ultrahigh strain rates, of the invariance of the dissipative action, as well as the dependence of the strain rate on the shock stress.

Though completely destroyed at the end of the experiment, the research team was able to see the aluminum being compressed to 400,000 atmospheres in about 20 trillionths of a second.

More Information

Jonathan Crowhurst

"New form of girl's best friend is lighter than ever," LLNL news release, May 17, 2011.

"Shocking results from diamond anvil cell experiments," LLNL news release, July 6, 2010.

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administratio

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

Further reports about: LLNL Livermore Security Forum

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>