Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Compression experiments lead to shocking results

Using acceleration 1 trillion times faster than a jet fighter in a maximum turn, researchers have gained new insight into dynamic compression of aluminum at ultrahigh strain rates.

Controlled shock compression has been used for decades to examine the behavior of materials under extreme conditions of pressure and temperature.

Using an ultrafast spectroscopic technique (used to track shocks on a time scale of ten trillionths of a second), Lawrence Livermore National Laboratory scientists Jonathan Crowhurst, Michael Armstrong, Kim Knight, Joseph Zaug and Elaine Behymer measured breakouts (driven by laser-induced shocks) in aluminum thin films with accelerations in the range of 10 trillion g's. The research appears in the Sept. 23 edition of the journal Physical Review Letters.

"The details of how solid materials rapidly deform on sub-micron-length scales have been the subject of speculation for decades," Armstrong said. "For the first time, our experiments can test fundamental scaling laws on time and length scales where they may start to break down at strain rates that are orders of magnitude larger than previously examined."

... more about:
»LLNL »Livermore »Security Forum

"In solids, a sufficiently large amplitude shock produces irreversible plastic deformation and relaxes the initial stress," Crowhurst said. "As the amplitude continues to increase, and if the shock drive is maintained, a steady-wave shock profile evolves, which propagates indefinitely without change in form."

But the team said that a fundamental understanding of shock-induced deformation is still lacking. In particular, little is understood about the behavior of materials, including metals, during the initial phase of shock compression and at high strain rates.

"Our original goal was not too ambitious," Crowhurst said. "We only wanted to show that measurements on ultrafast time scales could achieve consistency with longer time scale experiments. We did this, but then got a surprise - unexpected insight into shock wave phenomena."

The researchers measured shock rises in aluminum and obtained shock stresses, shock widths and strain rates. They used the information to test the validity, at ultrahigh strain rates, of the invariance of the dissipative action, as well as the dependence of the strain rate on the shock stress.

Though completely destroyed at the end of the experiment, the research team was able to see the aluminum being compressed to 400,000 atmospheres in about 20 trillionths of a second.

More Information

Jonathan Crowhurst

"New form of girl's best friend is lighter than ever," LLNL news release, May 17, 2011.

"Shocking results from diamond anvil cell experiments," LLNL news release, July 6, 2010.

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administratio

Anne Stark | EurekAlert!
Further information:

Further reports about: LLNL Livermore Security Forum

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>