Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Competition in the Quantum World

Innsbruck physicists led by Rainer Blatt and Peter Zoller experimentally gained a deep insight into the nature of quantum mechanical phase transitions.

They are the first scientists that simulated the competition between two rival dynamical processes at a novel type of transition between two quantum mechanical orders. They have published the results of their work in the journal Nature Physics.

The physicists engineer a classical environment, which generates dissipative dynamics, leading to fragile long-range quantum mechanical correlations between distant particles.

“When water boils, its molecules are released as vapor. We call this change of the physical state of matter a phase transition,” explains Sebastian Diehl from the Institute of Theoretical Physics at the University of Innsbruck. Together with his colleagues from the Institute for Experimental Physics and the theorist Markus Mueller from the Complutense University of Madrid, he studied the transition between two quantum mechanical orders in a way never before observed. The quantum physicists in Innsbruck use a new device for the experiment, which is currently considered to be one of the most promising developments in quantum physics: a quantum simulator. It is based on a small-scale quantum computer and can simulate physical phenomena a classical computer cannot investigate efficiently. “Such a quantum simulator allows us to experimentally study quantum phenomena in many-body systems that are coupled to their environment,” explain experimental physicists Philipp Schindler and Thomas Monz.

Observing the competition
With just a few trapped ions the scientists simulate the complex physical processes of quantum mechanical phase transitions. To achieve this, they have to manipulate and control the particles with high accuracy; the experimental physicists in Innsbruck are world leaders in this field. “For this experiment we use a programmable quantum simulator with up to five ions,” says Philipp Schindler. One of the particles is used as a means to couple the system to the classical environment in a controlled manner. The other ions are used for carrying out quantum operations. “We call this an open quantum simulator. Usually we want to suppress this coupling because it destroys the fragile quantum effects in the system. Here, however, we use it to bring order into the quantum mechanical system,” explains Schindler. “In our specific case, we engineer a classical environment, which generates dissipative dynamics, leading to fragile long-range quantum mechanical correlations between distant particles.” In the following step, this dynamics is then set in competition with a different type of interactions, which interrupts the dynamics that create the quantum mechanical order. “By doing this, we are able to observe how the competition between these two processes takes place and what precisely occurs right at the transition between two distinct orders of matter,” explains theoretical physicist Sebastian Diehl.
Error reduction
The experiment demands an enormous degree of precision, which requires immediate error corrections to be able to simulate the physical processes correctly. Since a comprehensive error correction, as developed for quantum computers, involves considerable resource overheads, the physicists in Innsbruck chose another promising alternative path. They identified the most important sources of error occurring during the simulation and specifically targeted them. Schindler is convinced: “This way of error reduction will surely set an example for other experiments. While general quantum error correction remains a long-term goal, we may be able to successfully use this type of error correction a lot sooner for reliable quantum simulation of larger systems,” adds Markus Mueller.

Interweaving theory with experiment
Such an experimental study of the nature of quantum mechanical phase transitions is internationally unique. It was only possible because advanced experimental know-how was successfully combined with theoretical research, which was carried out in close collaboration between physicists from Innsbruck and Madrid. “This link between theoretical and experimental physicists who work closely together, and in Innsbruck under one roof, is possible in very few places. It is also one of the great strengths of quantum physics research carried out in Innsbruck. And this research, once again, led us into an area of physics that hadn’t been explored before,” says Rainer Blatt. “In this experiment the physics of many-body systems is successfully simulated with a few trapped ions. This clearly shows the potential and the possibilities of quantum simulation,” adds Peter Zoller.

Publication: Quantum simulation of dynamical maps with trapped ions. P. Schindler, M. Müller, D. Nigg, J. T. Barreiro, E. A. Martinez, M. Hennrich, T. Monz, S. Diehl, P. Zoller und R. Blatt, Advance online publication, Nature Physics am 19. Mai 2013 DOI: 10.1038/NPHYS2630

Philipp Schindler
Institute for Experimental Physics
University of Innsbruck
Phone: +43 512 507-52453

Christian Flatz
Public Relations
University of Innsbruck
Phone: +43 512 507-32022
Cell: +43 676 872532022
Weitere Informationen:
- Quantum simulation of dynamical maps with trapped ions. P. Schindler, M. Müller, D. Nigg, J. T. Barreiro, E. A. Martinez, M. Hennrich, T. Monz, S. Diehl, P. Zoller und R. Blatt, Advance online publication, Nature Physics on May 19, 2013
- Quantum Optics and Spectroscopy

Dr. Christian Flatz | Universität Innsbruck
Further information:

More articles from Physics and Astronomy:

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>