Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Cavity protection effect' helps to conserve quantum information

18.08.2014

Coupling atomic spins in diamonds to microwave resonators could lead to new quantum technologies. Researchers at the Vienna University of Technology (TU Wien) have now managed to dramatically prolong the time these systems can store information

The electronics we use for our computers only knows two different states: zero or one. Quantum systems on the other hand can be in different states at once, they can store a superposition of "zero" and "one".

Diamond Chip

The quantum system studied at TU Wien (Vienna): a black diamond (center) contains nitrogen atoms, which are coupled to a microwave resonator.

Credit: TU Wien

This phenomenon could be used to build ultrafast quantum computers, but there are several technological obstacles that have to be overcome first. The biggest problem is that quantum states are quickly destroyed due to interactions with the environment. At TU Wien (Vienna), scientists have now succeeded in using a protection effect to enhance the stability of a particularly promising quantum system.

A Quantum Computer Made of Two Systems

There are various concepts for possible quantum computers. "What we use is a hybrid system of two completely different quantum technologies", says Johannes Majer. Together with his team, he couples microwaves and atoms, investigating and building a new type of quantum memory.

The theorists Dmitry Krimer and Stefan Rotter developed a theoretical model describing the complex dynamics in such hybrid quantum systems.

In a microwave resonator, photons are created. They interact with the spin of nitrogen atoms, which are built into a diamond. The microwave resonator can be used to quickly transport quantum information.

The atomic spins in the diamond can store it – at least for a period of several hundred nanoseconds, which is long compared to the time scale on which photons move in the microwave resonator.

"All nitrogen atoms are completely identical. But when they are placed in slightly different surroundings, they have slightly different transition frequencies", says Stefan Putz, PhD-student at Vienna University of Technology. The atomic spins behave like a room full of pendulum clocks. Initially they may oscillate in sync, but as they can never be precisely identical, they eventually lose their rhythm, creating random noise.

Coupling Causes Order

"By creating a strong coupling between the atomic spins and the resonator, it is possible to dramatically prolong the time during which the spins oscillate in strict time – if their energy levels obey the right distribution", says Dmitry Krimer. The atomic spins do not directly interact with each other, but the mere fact that they are collectively coupled to the microwave resonator prevents them from changing into a state in which they cannot be used for processing quantum information any longer. This protection effect considerably enhances the duration in which quantum information can be read out from the atomic spins.

"Improving the quantum coherence time with this cavity protection effect opens up many promising applications for our hybrid quantum system", says Johannes Majer. The paper has now been published in Nature Physics.

Further information
Dr. Johannes Majer
Institute for Atomic and Subatomic Physics
TU Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141838
johannes.majer@tuwien.ac.at

Florian Aigner | Eurek Alert!
Further information:
http://www.tuwien.ac.at

Further reports about: Cavity Coupling Physics Quantum Technology interact nitrogen oscillate photons technologies

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>