Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon’s role in atmosphere formation

09.04.2013
A new study in Proceedings of the National Academy of Sciences suggests that the way carbon moves from within a planet to the surface plays a big role in the evolution of a planet's atmosphere. If Mars released much of its carbon as methane, for example, it might have been warm enough to support liquid water.

A new study of how carbon is trapped and released by iron-rich volcanic magma offers clues about the early atmospheric evolution on Mars and other terrestrial bodies.

The composition of a planet’s atmosphere has roots deep beneath its surface. When mantle material melts to form magma, it traps subsurface carbon. As magma moves upward toward the surface and pressure decreases, that carbon is released as a gas. On Earth, carbon is trapped in magma as carbonate and degassed as carbon dioxide, a greenhouse gas that helps Earth’s atmosphere trap heat from the sun. But how carbon is transferred from underground to the atmosphere in other planets — and how that might influence greenhouse conditions — wasn’t well understood.

“We know carbon goes from the solid mantle to the liquid magma, from liquid to gas and then out,” said Alberto Saal, professor of geological sciences at Brown and one of the study’s authors. “We want to understand how the different carbon species that are formed in the conditions that are relevant to the planet affect the transfer.”

This latest study, which also included researchers from Northwestern University and the Carnegie Institution of Washington, indicated that under conditions like those found in the mantles of Mars, the Moon and other bodies, carbon is trapped in the magmas mainly as a species called iron carbonyl and released as carbon monoxide and methane gas. Both gasses, methane especially, have high greenhouse potential.

The findings, published in the Proceedings of the National Academy of Sciences, suggest that when volcanism was widespread early in Mars’ history, it may have released enough methane to keep the planet significantly warmer than it is today.

A key difference between conditions in Earth’s mantle and the mantles of other terrestrial bodies is what scientists refer to as oxygen fugacity, the amount of free oxygen available to react with other elements. Earth’s mantle today has a relatively high oxygen fugacity, but in bodies like the Moon and early Mars, it is very low. To find out what how that lower oxygen fugacity affects carbon transfer, the researchers set up a series of experiments using volcanic basalt similar to those found on the Moon and Mars.

They melted the volcanic rock at varying pressures, temperature, and oxygen fugacities, using a powerful spectrometer to measure how much carbon was absorbed by the melt and in what form. They found that at low oxygen fugacities, carbon was trapped as iron carbonyl, something previous research hadn’t detected. At lower pressures, iron carbonyl degassed as carbon monoxide and methane.

“We found that you can dissolve in the magma more carbon at low oxygen fugacity than what was previously thought,” said Diane Wetzel, a Brown graduate student and the study’s lead author. “That plays a big role in the degassing of planetary interiors and in how that will then affect the evolution of atmospheres in different planetary bodies.”

Early in its history, Mars was home to giant active volcanoes, which means significant amounts of methane would have been released by carbon transfer. Because of methane’s greenhouse potential, which is much higher than that of carbon dioxide, the findings suggest that even a thin atmosphere early in Mars’ history might have created conditions warm enough for liquid water on the surface.

Other authors on the paper were Malcolm Rutherford from Brown, Steve Jacobson from Northwestern. and Erik Hauri from the Carnegie Institution. The work was supported by NASA, the National Science Foundation, the David and Lucile Packard Foundation, and the Deep Carbon Observatory.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

Kevin Stacey | EurekAlert!
Further information:
http://www.brown.edu
http://news.brown.edu/pressreleases/2013/04/magma

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>