Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon’s role in atmosphere formation

09.04.2013
A new study in Proceedings of the National Academy of Sciences suggests that the way carbon moves from within a planet to the surface plays a big role in the evolution of a planet's atmosphere. If Mars released much of its carbon as methane, for example, it might have been warm enough to support liquid water.

A new study of how carbon is trapped and released by iron-rich volcanic magma offers clues about the early atmospheric evolution on Mars and other terrestrial bodies.

The composition of a planet’s atmosphere has roots deep beneath its surface. When mantle material melts to form magma, it traps subsurface carbon. As magma moves upward toward the surface and pressure decreases, that carbon is released as a gas. On Earth, carbon is trapped in magma as carbonate and degassed as carbon dioxide, a greenhouse gas that helps Earth’s atmosphere trap heat from the sun. But how carbon is transferred from underground to the atmosphere in other planets — and how that might influence greenhouse conditions — wasn’t well understood.

“We know carbon goes from the solid mantle to the liquid magma, from liquid to gas and then out,” said Alberto Saal, professor of geological sciences at Brown and one of the study’s authors. “We want to understand how the different carbon species that are formed in the conditions that are relevant to the planet affect the transfer.”

This latest study, which also included researchers from Northwestern University and the Carnegie Institution of Washington, indicated that under conditions like those found in the mantles of Mars, the Moon and other bodies, carbon is trapped in the magmas mainly as a species called iron carbonyl and released as carbon monoxide and methane gas. Both gasses, methane especially, have high greenhouse potential.

The findings, published in the Proceedings of the National Academy of Sciences, suggest that when volcanism was widespread early in Mars’ history, it may have released enough methane to keep the planet significantly warmer than it is today.

A key difference between conditions in Earth’s mantle and the mantles of other terrestrial bodies is what scientists refer to as oxygen fugacity, the amount of free oxygen available to react with other elements. Earth’s mantle today has a relatively high oxygen fugacity, but in bodies like the Moon and early Mars, it is very low. To find out what how that lower oxygen fugacity affects carbon transfer, the researchers set up a series of experiments using volcanic basalt similar to those found on the Moon and Mars.

They melted the volcanic rock at varying pressures, temperature, and oxygen fugacities, using a powerful spectrometer to measure how much carbon was absorbed by the melt and in what form. They found that at low oxygen fugacities, carbon was trapped as iron carbonyl, something previous research hadn’t detected. At lower pressures, iron carbonyl degassed as carbon monoxide and methane.

“We found that you can dissolve in the magma more carbon at low oxygen fugacity than what was previously thought,” said Diane Wetzel, a Brown graduate student and the study’s lead author. “That plays a big role in the degassing of planetary interiors and in how that will then affect the evolution of atmospheres in different planetary bodies.”

Early in its history, Mars was home to giant active volcanoes, which means significant amounts of methane would have been released by carbon transfer. Because of methane’s greenhouse potential, which is much higher than that of carbon dioxide, the findings suggest that even a thin atmosphere early in Mars’ history might have created conditions warm enough for liquid water on the surface.

Other authors on the paper were Malcolm Rutherford from Brown, Steve Jacobson from Northwestern. and Erik Hauri from the Carnegie Institution. The work was supported by NASA, the National Science Foundation, the David and Lucile Packard Foundation, and the Deep Carbon Observatory.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

Kevin Stacey | EurekAlert!
Further information:
http://www.brown.edu
http://news.brown.edu/pressreleases/2013/04/magma

More articles from Physics and Astronomy:

nachricht The moon is front and center during a total solar eclipse
24.07.2017 | NASA/Goddard Space Flight Center

nachricht Superluminous supernova marks the death of a star at cosmic high noon
24.07.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>